[1]
|
K. Albert, T. David. High accelerometer, high performance solid state accelerometer development. Electronics Letters, vol.,38, no.,23, pp.,20-25, 1994. |
[2]
|
H. Hamacher. Microgravity characterisation and microgravity improvement for the columbus orbiting facility. In Proceedings of Space Satation Utilisation, ESOC, Darmstadt, Germang, SP-385, pp.,209-219, 1996. |
[3]
|
R. V. Alauev, Y. V. Ivanov, D. M. Malyutin, V. Y. Raspopov, V. A. Dmitriev, S. P. Ermilov, G. A. Ermilova. High-precision algorithmic compensation of temperature instability of accelerometer's scaling factor. Automation and Remote Control, vol.,72, no.,4, pp.,853-860, 2011. |
[4]
|
R. Levy, Q. L. Traon, S. Masson, O. Ducloux, D. Janiaud, J. Guerard, V. Gaudineau, C. Chartier. An integrated resonator-based thermal compensation for vibrating beam accelerometers. In Proceedings of the IEEE Sensors, IEEE, Taipei, Taiwan, China, pp.,1-5, 2012. |
[5]
|
Y. J. Pan, L. L. Li, C. H. Ren, H. L. Luo. Study on the compensation for a quartz accelerometer based on a wavelet neural network. Measurement Science & Technology, vol.,21, no.,10, pp.,102-115, 2010. |
[6]
|
Y. Yu, Y. S. Zhong. High precision two-stage robust temperature control for accelerometer unit. Acta Aeronautica et Astronautica Sinica, vol.,30, no.,6, pp.,1103-1108, 2009. (in Chinese) |
[7]
|
J. Lee, R. Jaewook. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control. Journal of Micromechanics and Microengineering, vol.,22, no.,9, pp.,172-184, 2012. |
[8]
|
S. Eichstat, A. Link, T. Bruns. On-line dynamic error compensation of accelerometers by uncertainty-optimal filtering. Measurement, vol.,43, no.,5, pp.,708-713, 2010. |
[9]
|
D. H. Li, X. Y. Gao, Z. X. Zhang, F. Zhou. Research on temperature property of piezoelectric vibration accelerometer based on cymbal transducer. Ferroelectrics, vol.,405, no.,1, pp126-132, 2010. |
[10]
|
S. Shinomiya. Temperature error of two-phase induction generator-type accelerometer and its compensation. Electrical Engineering in Japan, vol.,96, no.,4, pp.,53-59, 1976. |
[11]
|
L. T. Grigorie, R. M. Botez. The bias temperature dependence estimation and compensation for an accelerometer by use of the neuro-fuzzy techniques. Transactions of the Canadian Society for Mechanical Engineering, vol.,32, no.,3-4, pp.,383-340, 2008. |
[12]
|
H. Takao, Y. Matsumoto, M. Ishida, T. Nakamura, H. Tanaka, H. D. Seo. Three-dimensional vector accelerometer using SOI structure for high-temperature use. Electronics and Communications in Japan, vol.,79, no.,3, pp.,61-72, 1996. |
[13]
|
E. Gaura, R. Rider, N. Steele. Neural network based compensation of micromachined accelerometers for static and low frequency applications. In Proceedings of the 13th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, New Orleans, USA, pp.,534-542, 2000. |
[14]
|
C. H. Ren, Y. J. Pan, J. F. Li, J. J. Liu. Two-dimensional compensation on time and temperature drift of quartzose flexible accelerometer based on neural network. Journal of Chinese Inertial Technology, vol.,15, no.,3, pp.,366-376, 2007. |
[15]
|
L.T. Grigorie. The bias temperature dependence estimation and compensation for an accelerometer by the use of the neuro-fuzzy techniques. Transactions of the Canadian Society for Mechanical Engineering, vol.,32, no.,3-4, pp.,383-400, 2008. |
[16]
|
Z. Xu, Y. F. Liu, J. X. Dong. Thermal bias drift compensation of MEMS accelerometer based on relevance vector machine. Journal of Beijing University of Aeronautics and Astronautics, vol.,39, no.,11, pp.,1558-1562, 2013. |
[17]
|
X. F. Li, D. H. Li, J. M. Gao, M. Pang. Temperature drift compensation algorithm based on BP and GA in quartz flexible accelerometer. Applied Mechanics and Mechanical Engineering, vol.,249-250, pp.,95-99, 2013. |
[18]
|
M. L. Ding, Q. D. Zhou, K. Song. A new method for accelerometer dynamic compensation based on CMAC. In Proceedings of the 4th International Symposium on Neural Networks:Advances in Neural Networks, Nanjing, China, pp.,667-675, 2007. |
[19]
|
L. Lang, J. G. Chen, M. P. Wu. Study of the temperature error model and the technology for compensating temperature of the quartz flexible accelerometer. Navigation and Control, vol.,8, no.,2,pp.,46-51, 2009. (in Chinese) |
[20]
|
R. V. Alaluev, Y. V. Ivanov, D. M. Malyutin, V. Y. Raspopov, V. A. Dmitriev, S. P. Ermilov, G. A. Ermilova. High-precision algorithmic compensation of temperature instability of accelerometer's scaling factor. Automation and Remote Control, vol.,72, no.,4, pp.,853-860, 2011. |
[21]
|
Test Methods for Single-axis Pendulous Servo Linear Accelerometers, National Science and Technology Commission, GJB 1037-2004, 2004. (in Chinese) |
[22]
|
Verification Equipment of Linear Accelerometer by Earth's Gravitation. State Administration of Quality Supervision and Inspection Quarantine, GJB 1071-2011, 2011. (in Chinese) |
[23]
|
V. M. Gotlib, E. N. Evlanov, B. V. Zhbkov,V. M. Linkin, A. B. Manukin, S. N. Podkolzin, V. I. Rebrov. High-sensitivity quartz accelerometer for measurements of small accelerations of spacecraft. Cosmic Research, vol.,42, no.,1, pp.,54-59, 2004. |
[24]
|
F. Li, L. Y. Wang, J. H. Zhao. Research on error compensation for oil drilling angle based on ANFIS. In Proceedings of the 3th International Conference on Intelligent Computing, Springer, Qingdao, China, pp.,730-737, 2007. |
[25]
|
B. V. Amini, F. Ayazi. Micro-gravity capacitive silicon-on-insulator accelerometers. Journal of Micromechanics and Microengineering, vol.,15, no.,11, pp.,2113-2120, 2005. |
[26]
|
M. A. Barulina, V. E. Dzhashitov, V. M. Pankratov, M. A. Kalinin, A. A. Papko. Mathematical model of a micromechanical accelerometer with temperature influences, dynamic effects, and the thermoelastic stress-strain state taken into account. Gyroscopy and Navigation, vol.,1, no.,1, pp.,52-61, 2010. |
[27]
|
K. I. Lee, H. Takao, K. Sawada, H. D. Seo M. Ishida. Improvement of thermal response in temperature controlled precise three-axis accelerometer with stabilized characteristics over a wide temperature range. In Proceedings of the 13th International Conference on Solid-State Sensors, Actuators, and Microsystems, IEEE, Seoul, South Korea, vol.,1, pp.,800-803, 2005. |
[28]
|
J. Mackley, S. Nahavandi. Active temperature compensation for an accelerometer based angle measuring device. In Proceedings of the Intelligent Automation and Control Trends, IEEE, Seville, Spain, pp.,383-388, 2004. |
[29]
|
A. Stefani, W. Yuan, C. Markos, H. K. Rasmussen, S. Andresen, R. Guastavino, F. K. Nielsen, B. Rose, O. Jespersen, N. Herholdt-Rasmussen, O. Bang. Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones. In Proceedings of the 22nd International Conference on Optical Fiber Sensors, Beijing, China, vol.,8421, pp.,100-115, 2012. |
[30]
|
X. T. Yu, L. Zhang, L. R. Guo, F. Zhou. Identification for temperature model of accelerometer based on proximal SVR and particle swarm optimization algorithms. Journal of Control Theory and Applications, vol.,10, no.,3, pp.,349-353, 2012. |
[31]
|
J. Lundberg, A. Parida, P. Söoderholm. Running temperature and mechanical stability of grease as maintenance parameters of railway bearings. International Journal of Automation & Computing, vol.,7, no.,2, pp.,160-166, 2010. |