Volume 12 Number 3
June 2015
Article Contents
Sunil Nilkanth Pawar and Rajankumar Sadashivrao Bichkar. Genetic Algorithm with Variable Length Chromosomes for Network Intrusion Detection. International Journal of Automation and Computing, vol. 12, no. 3, pp. 337-342, 2015. doi: 10.1007/s11633-014-0870-x
Cite as: Sunil Nilkanth Pawar and Rajankumar Sadashivrao Bichkar. Genetic Algorithm with Variable Length Chromosomes for Network Intrusion Detection. International Journal of Automation and Computing, vol. 12, no. 3, pp. 337-342, 2015. doi: 10.1007/s11633-014-0870-x

Genetic Algorithm with Variable Length Chromosomes for Network Intrusion Detection

  • Received: 2013-02-15
  • Genetic algorithm (GA) has received significant attention for the design and implementation of intrusion detection systems. In this paper, it is proposed to use variable length chromosomes (VLCs) in a GA-based network intrusion detection system. Fewer chromosomes with relevant features are used for rule generation. An effective fitness function is used to define the fitness of each rule. Each chromosome will have one or more rules in it. As each chromosome is a complete solution to the problem, fewer chromosomes are sufficient for effective intrusion detection. This reduces the computational time. The proposed approach is tested using Defense Advanced Research Project Agency (DARPA) 1998 data. The experimental results show that the proposed approach is efficient in network intrusion detection.
  • [1] S. Mukkamala, J. Guadalupe, A. Sung. Intrusion detection using neural networks and support vector machines. In Proceedings of the International Joint Conference on Neural Networks, IEEE, Honolulu, HI, USA, vol. 2, pp. 1702-1707, 2002.
    [2] S. Owais, V. Snasel, P. Kromer, A. Abraham. Survey: Using genetic algorithm approach in intrusion detection systems techniques. In Proceedings of the 7th Computer Information Systems and Industrial Management Applications, IEEE, Ostrava, USA, pp. 300-307, 2008.
    [3] D. J. Day, Z. X. Zhao. Protecting against address space layout randomisation (ASLR) compromises and return-to-libc attacks using network intrusion detection systems. International Journal of Automation and Computing, vol. 8, no. 4, pp. 472-483, 2011.
    [4] M. Arun, A. Krishnan. Functional verification of signature detection architectures for high speed network applications. International Journal of Automation and Computing, vol.9, no. 4, pp. 395-402, 2012.
    [5] J. Gomez, D. Dasgupta. Evolving fuzzy classifiers for intrusion detection. In Proceedings of 2002 IEEE Workshop on Information Assurance, IEEE, West Point, NY,USA, pp. 321-323, 2002.
    [6] M. Moradi, M. Zulkernine. A neural network based system for intrusion detection and classification of attacks. In Proceedings of IEEE International Conference on Advances in Intelligent Systems-theory and Applications, IEEE, Luxembourg, Amsterdam, pp. 148-153, 2004.
    [7] R. H. Gong, M. Zulkernine, P. Abolmaesumi. A software implementation of a genetic algorithm based approach to network intrusion detection. In Proceedings of the 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and the 1st ACIS International Workshop on Self-Assembling Wireless Network, IEEE, Washington, DC, USA, pp. 246-253, 2005.
    [8] J. H. B. Ang, K. C. Tan, A. A. Mamun. A memetic evolutionary search algorithm with variable length chromosome for rule extraction. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, IEEE, Singapore, pp. 535-540, 2008.
    [9] R. Cattral, F. Oppacher, D. Deugo. Rule acquisition with a genetic algorithm. In Proceedings of the Congress on Evolutionary Computation, IEEE, Washington, DC, USA pp. 125-129, 1999.
    [10] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning, 7th ed., Hong Kong, China: Pearson Education, pp. 1-23, 2004.
    [11] M. J. Middlemiss, G. Dick. Weighted feature extraction using a genetic algorithm for intrusion detection. In Proceedings of Congress on Evolutionary Computation, IEEE, Canberra, ACT, Australia, pp. 1669-1675, 2003.
    [12] J. L. Zhao, J. F. Zhao, J. J. Li. Intrusion detection based on clustering genetic algorithm. In Proceedings of International Conference Based on Machine Learning and Cybernetics, IEEE, Guangzhou, China, pp. 3911-3914, 2005.
    [13] T. Xiao, G. Z. Qu, S. Hariri, M. Yousif. An efficient network intrusion detection method based on information theory and genetic algorithm. In Proceedings of the 24th IEEE International Performance Computing and Communications Conference, IEEE, Phoenix, AZ, USA, pp. 11-17, 2005.
    [14] C. H. Lee, S. W. Shin, J. W. Chung. Network intrusion detection through genetic feature selection. In Proceedings of 7th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/ Distributed Computing, IEEE, Las Vegas, NV, USA, pp. 109-114, 2006.
    [15] S. Ashfaq, M. U. Farooq, A. Karim. Efficient rule generation for cost-sensitive misuse detection using genetic algorithms. In Proceedings of International Conference on Computational Intelligence and Security, IEEE, Guangzhou, China, vol. 1, pp. 282-285, 2006.
    [16] Z. M. Chen, J. Y. Feng, S. Xu, R. Z. Xu. The research of intrusion detection technology based on genetic algorithms. In Proceedings of International Conference on Networks Security, Wireless Communications and Trusted Computing, IEEE, Wuhan, China, pp. 248-250, 2009.
    [17] W. Li. A Genetic Algorithm Approach to Network Intrusion Detection, SANS Institute, USA, 2004.
    [18] R. Rajesh, M. R. Kaimal. GAVLC: GA with variable length chromosome for the simultaneous design and stability analysis of T-S fuzzy controllers. In Proceedings of IEEE International Conference on Fuzzy Systems, IEEE, Hong Kong, China, pp. 1389-1396, 2008.
    [19] B. Hutt, K. Warwick. Synapsing variable-length crossover: Meaningful crossover for variable-length genomes. IEEE Transactions on Evolutionary Computation, vol. 11, no. 1, pp. 118-131, 2007.
    [20] S. N. Pawar, R. S. Bichkar. Using enumeration in a GAbased intrusion detection. International Journal of Computer Applications, vol. 56, no. 15, pp. 44-48, 2012.
    [21] A. Papagelis, D. Kalles. GA Tree: Genetically evolved decision trees. In Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence, IEEE, Vancouver, BC, Canada, pp. 203-206, 2000.
    [22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten. The WEKA data mining software: An update. In Proceedings of ACM SIGKDD Explorations Newsletter, ACM, New York, USA, vol. 11, no. 1, pp. 10-18, 2009.
    [23] W. M. Hu, J. Gao, Y. G. Wang, O. Wu, S. Maybank. Online adaboost-based parameterized methods for dynamic distributed network intrusion detection. IEEE Transactions on Cybernetics, vol. 44, no. 1, pp. 66-82, 2014.
    [24] N. N. Lu, S. G. Mabu, T. Wang, K. Hirasawa. Integrated fuzzy GNP rule mining with distance-based classification for intrusion detection system. In Proceedings of International Conference on Systems, Man, and Cybernetics, IEEE, Seoul, Korea, pp. 1569-1574, 2012.
    [25] C. Cheng, W. P. Tay, G. B. Huang. Extreme learning machines for intrusion detection. In Proceedings of the International Joint Conference on Neural Networks, IEEE, Brisbane, QLD, Australia, pp. 1-8, 2012.
    [26] H. Altwaijry. Bayesian based intrusion detection system. IAENG Transactions on Engineering Technologies, Netherlands: Springer, pp. 29-44, 2013.
    [27] Y. H. Li, J. B. Xia, S. L. Zhang, J. K. Yan, X. C. Ai, K. B. Dai. An efficient intrusion detection system based on support vector machines and gradually features removal method. Expert Systems with Applications, vol. 39, no. 1, pp. 424-430, 2012.
  • 加载中
  • [1] Dong-Jie Li, Yang-Yang Li, Jun-Xiang Li, Yu Fu. Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm . International Journal of Automation and Computing, 2018, 15(3): 267-276.  doi: 10.1007/s11633-017-1107-6
    [2] Syeda Mariam Muzammal, Munam Ali Shah, Si-Jing Zhang, Hong-Ji Yang. Conceivable Security Risks and Authentication Techniques for Smart Devices: A Comparative Evaluation of Security Practices . International Journal of Automation and Computing, 2016, 13(4): 350-363.  doi: 10.1007/s11633-016-1011-5
    [3] Hui Guan,  Hongji Yang,  Jun Wang. An Ontology-based Approach to Security Pattern Selection . International Journal of Automation and Computing, 2016, 13(2): 168-182.  doi: 10.1007/s11633-016-0950-1
    [4] Imad Benacer, Zohir Dibi. Extracting Parameters of OFET Before and After Threshold Voltage Using Genetic Algorithms . International Journal of Automation and Computing, 2016, 13(4): 382-391.  doi: 10.1007/s11633-015-0918-6
    [5] Kumaran Rajarathinam,  James Barry Gomm,  Ding-Li Yu,  Ahmed Saad Abdelhadi. PID Controller Tuning for a Multivariable Glass Furnace Process by Genetic Algorithm . International Journal of Automation and Computing, 2016, 13(1): 64-72.  doi: 10.1007/s11633-015-0910-1
    [6] Shuang Huang,  Chun-Jie Zhou,  Shuang-Hua Yang,  Yuan-Qing Qin. Cyber-physical System Security for Networked Industrial Processes . International Journal of Automation and Computing, 2015, 12(6): 567-578.  doi: 10.1007/s11633-015-0923-9
    [7] Kayode Owa,  Sanjay Sharma,  Robert Sutton. A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable Coupled Tank System . International Journal of Automation and Computing, 2015, 12(2): 156-170.  doi: 10.1007/s11633-014-0825-2
    [8] Hong-Bin Wang,  Mian Liu. Design of Robotic Visual Servo Control Based on Neural Network and Genetic Algorithm . International Journal of Automation and Computing, 2012, 9(1): 24-29.  doi: 10.1007/s11633-012-0612-x
    [9] Anna Gorbenko,  Vladimir Popov. Task-resource Scheduling Problem . International Journal of Automation and Computing, 2012, 9(4): 429-441.  doi: 10.1007/s11633-012-0664-y
    [10] M. Arun, A. Krishnan. Functional Verification of Signature Detection Architectures for High Speed Network Applications . International Journal of Automation and Computing, 2012, 9(4): 395-402.  doi: 10.1007/s11633-012-0660-2
    [11] Khalid Jebari, Abdelaziz Bouroumi, Aziz Ettouhami. Fuzzy Genetic Sharing for Dynamic Optimization . International Journal of Automation and Computing, 2012, 9(6): 616-626 .  doi: 10.1007/s11633-012-0687-4
    [12] Junaid Arshad,  Paul Townend,  Jie Xu. An Automatic Intrusion Diagnosis Approach for Clouds . International Journal of Automation and Computing, 2011, 8(3): 286-296.  doi: 10.1007/s11633-011-0584-2
    [13] David J Day, Zheng-Xu Zhao. Protecting Against Address Space Layout Randomisation (ASLR) Compromises and Return-to-Libc Attacks Using Network Intrusion Detection Systems . International Journal of Automation and Computing, 2011, 8(4): 472-483.  doi: 10.1007/s11633-011-0606-0
    [14] R. Saravanan, S. Ramabalan, C. Balamurugan, A. Subash. Evolutionary Trajectory Planning for an Industrial Robot . International Journal of Automation and Computing, 2010, 7(2): 190-198.  doi: 10.1007/s11633-010-0190-8
    [15] Siva S. Sivatha Sindhu, S. Geetha, M. Marikannan, A. Kannan. A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction System . International Journal of Automation and Computing, 2009, 6(4): 406-414.  doi: 10.1007/s11633-009-0406-y
    [16] Tung-Kuan Liu, Chiu-Hung Chen, Zu-Shu Li, Jyh-Horng Chou. Method of Inequalities-based Multiobjective Genetic Algorithm for Optimizing a Cart-double-pendulum System . International Journal of Automation and Computing, 2009, 6(1): 29-37.  doi: 10.1007/s11633-009-0029-3
    [17] S. C. Chiam,  K. C. Tan,  A. Al Mamum. Evolutionary Multi-objective Portfolio Optimization in Practical Context . International Journal of Automation and Computing, 2008, 5(1): 67-80.  doi: 10.1007/s11633-008-0067-2
    [18] Pietro S. Oliveto,  Jun He,  Xin Yao. Time Complexity of Evolutionary Algorithms for Combinatorial Optimization:A Decade of Results . International Journal of Automation and Computing, 2007, 4(3): 281-293.  doi: 10.1007/s11633-007-0281-3
    [19] Shengxiang Yang, Renato Tinós. A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments . International Journal of Automation and Computing, 2007, 4(3): 243-254.  doi: 10.1007/s11633-007-0243-9
    [20] Cheng-Dong Wu, Ying Zhang, Meng-Xin Li, Yong Yue. A Rough Set GA-based Hybrid Method for Robot Path Planning . International Journal of Automation and Computing, 2006, 3(1): 29-34.  doi: 10.1007/s11633-006-0029-5
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (6638) PDF downloads (3608) Citations (0)

Genetic Algorithm with Variable Length Chromosomes for Network Intrusion Detection

Abstract: Genetic algorithm (GA) has received significant attention for the design and implementation of intrusion detection systems. In this paper, it is proposed to use variable length chromosomes (VLCs) in a GA-based network intrusion detection system. Fewer chromosomes with relevant features are used for rule generation. An effective fitness function is used to define the fitness of each rule. Each chromosome will have one or more rules in it. As each chromosome is a complete solution to the problem, fewer chromosomes are sufficient for effective intrusion detection. This reduces the computational time. The proposed approach is tested using Defense Advanced Research Project Agency (DARPA) 1998 data. The experimental results show that the proposed approach is efficient in network intrusion detection.

Sunil Nilkanth Pawar and Rajankumar Sadashivrao Bichkar. Genetic Algorithm with Variable Length Chromosomes for Network Intrusion Detection. International Journal of Automation and Computing, vol. 12, no. 3, pp. 337-342, 2015. doi: 10.1007/s11633-014-0870-x
Citation: Sunil Nilkanth Pawar and Rajankumar Sadashivrao Bichkar. Genetic Algorithm with Variable Length Chromosomes for Network Intrusion Detection. International Journal of Automation and Computing, vol. 12, no. 3, pp. 337-342, 2015. doi: 10.1007/s11633-014-0870-x
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return