Volume 11 Number 5
October 2014
Article Contents
R. I. Minu and K. K. Thyagharajan. Semantic Rule Based Image Visual Feature Ontology Creation. International Journal of Automation and Computing, vol. 11, no. 5, pp. 489-499, 2014. doi: 10.1007/s11633-014-0832-3
Cite as: R. I. Minu and K. K. Thyagharajan. Semantic Rule Based Image Visual Feature Ontology Creation. International Journal of Automation and Computing, vol. 11, no. 5, pp. 489-499, 2014. doi: 10.1007/s11633-014-0832-3

Semantic Rule Based Image Visual Feature Ontology Creation

  • Received: 2014-01-15
  • Multimedia is one of the important communication channels for mankind. Due to the advancement in technology and enormous growth of mankind, a vast array of multimedia data is available today. This has resulted in the obvious need for some techniques for retrieving these data. This paper will give an overview of ontology-based image retrieval system for asteroideae flower family domain. In order to reduce the semantic gap between the low-level visual features of an image and the high-level domain knowledge, we have incorporated a concept of multi-modal image ontology. So, the created asteroideae flower domain specific ontology would have the knowledge about the domain and the visual features. The visual features used to define the ontology are prevalent color, basic intrinsic pattern and contour gradient. In prevalent color extraction, the most dominant color from the images was identified and indexed. In order to determine the texture pattern for a particular flower, basic intrinsic patterns were used. The contour gradients provide the information on the image edges with respect to the image base. These feature values are embedded in the ontology at appropriate slots with respect to the domain knowledge. This paper also defines some of the query axioms which are used to retrieve appropriate information from the created ontology. This ontology can be used for image retrieval system in semantic web.
  • [1] G. Hiranmay, S. Chaudhury, A. Mallik. Ontology for multimediaapplications. IEEE Intelligent Informatics Bulletin,vol. 14, no. 1, pp. 21-30, 2013.
    [2] H. Ma, J. K. Zhu, M. R. T. Lyu, I. King. Bridging the semanticgap between image contents and tags. IEEE Transactionson Multimedia, vol. 12, no. 5, pp. 462-473, 2010.
    [3] R. Datta, D. Joshi, J. Li, J. Z.Wang. Image retrieval: Ideas,influences, and trends of the new age. ACM Computing surveys,vol. 4, no. 2, Article 5, 2008.
    [4] J. Sun, Y. J. Xing. An effective image retrieval mechanismusing family based spatial consistency filtration with objectregion. International Journal of Automation And Computing,vol. 7, no. 1, pp. 23-30, 2010.
    [5] G. Nagarajan, K. K. Thyagharajan. A novel image retrievalapproach for semantic web. International Journal of ComputerApplications, vol. 37, no. 8, pp. 10-14, 2012.
    [6] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,B. Dom, M. Gorkani. Query by image and video content:The QBIC system. Computer, vol. 28, no. 9, pp. 23-32,1995.
    [7] J. R. Smith, S. F. Chang. VisualSEEk: A fully automatedcontent-based image query system. In Proceedings of the4th ACM international conference on Multimedia, ACM,Boston, USA, pp. 87-98, 1997.
    [8] S. F. Chang, W. Chen, H. J. Meng, H. Sundaram, D. Zhong.VideoQ: An automated content based video search systemusing visual cues. In Proceedings of the 5th InternationalConference on Multimedia, ACM, Boxton, USA, pp. 313-324, 1997.
    [9] T. Huang, M. Sharad, R. Kannan. Multimedia analysis andretrieval system (MARS) project. In Proceedings on AnnualClinic on Library Applications of Data Processing-digitalImage Access and Retrieval, 1996.
    [10] C. Carson, S. Belongie, H. Greenspan, J. Malik. Blobworld:Image segmentation using expectation-maximization andits application to image querying. IEEE Transactions onPattern Analysis and Machine Intelligence, vol. 24, no. 8,pp. 1026-1038, 2002.
    [11] O. D. Robles, P. Toharia, A. Rodre guez, L. Pastor. Towardsa content-based video retrieval system using wavelet-basedsignatures. In Proceedings of the 7th International Conferenceon Computer Graphics and Imaging, IASTED, Kauai,Hawaii, USA, pp. 344-349. 2004.
    [12] C. G. M. Snoek, K. E. A. van de Sande, O. De Rooij, B.Huurnink, J. R. R. Uijlings, M. van Liempt, M. Bugalhoy, I.Trancoso, F. Yan, M. A. Tahir, K. Mikolajczyk, J. Kittler,M. de Rijke, J. M. Geusebroek, T. Gevers, M. Worring,A. W. M. Smeulders. The MediaMill TRECVID 2009 semanticvideo search engine. In Proceedings of TREC VideoRetvieval Evaluation Workshop, 2009.
    [13] Y. Liu, D. S. Zhang, G. J. Lu. Region based image retrievalwith high level semantic using decision tree learning. PatternRecognition, vol. 41, no. 8, pp. 2554-2570, 2008.
    [14] K. K. Thyagharajan, R. Harikrishnan. Content based bandwidthaware hierarchical video summarization. InternationalJournal of Computer Science, Systems Engineeringand Information Technology, vol. 2, no. 2, pp. 197-203,2009.
    [15] S. Romberg, R. Lienhart, E. Horster. Multimodal image retrievalfusing modalities with multilayer multlimodal pLSA.International Journal of Multimedia Information Retrieval,vol. 1, no. 1, pp. 31-44, 2012.
    [16] K. K. Thyagharajan, G. Nagarajan. Semantically effectivevisual concept illustration for images. International Journalof Future Computer and Communication, vol. 3, no. 2,pp. 124-128, 2013.
    [17] H. Wang, S. Liu, L. T. Chia. Does ontology help in imageretrieval?: A comparison between keyword, text ontologyand multi-modality ontology approaches. In Proceedings ofthe 14th Annual ACM International Conference on Multimedia,ACM, New York, pp. 109-112, 2006.
    [18] The Angiosperm Phylogeny Group. An update of the angiospermphylogeny group classification for the orders andfamilies of flowering plants: APG II. Botanical Journal ofthe Linnean Society, vol. 141, no. 4, pp. 399-436, 2003.
    [19] T. Saitoh, T. Kaneko. Automatic recognition of wild flowers.Systems and Computers in Japan, vol. 34, no. 10,pp. 90-101, 2003.
    [20] K. Fukuda, T. Takiguchi, A. Yasuo. Multiple classifierbased on fuzzy c-means for a flower image retrieval. In Proceedings of Workshop on Nonlinear Circuits and Signal Processing,Bangkok, Thailand, pp. 76-79. 2008.
    [21] M. E. Nilsback, A. Zisserman. Automated flower classificationover a large number of classes. In Proceedings of the 6th Indian Conference on Computer Vision, Graphics and ImageProcessing, IEEE, Bhubaneswar, Indian, pp. 722-729,2008.
    [22] Y. N. Chai. Recognition Between a Large Number of FlowerSpecies, Ph. D. dissertation, University of Oxford, UK,2011.
    [23] R. I. Minu, K. K. Thyagarajan. A novel approach tobuild image ontology using texton. In Proceedings of InternationalSymposium on Intelligent Informatics, Springer,Chennai, India, vol. 182, pp. 333-339. 2013.
    [24] K. K. Thyagharajan, R. I. Minu. Prevalent color extractionand indexing. International Journal of Engineering andTechnology, vol. 5, no. 6, pp. 4841-4849, 2013.
    [25] S. C. Zhu, C. E. Guo, Y. Z. Wang, Z. J. Xu. What are Textons?International Journal of Computer Vision, vol. 62,no. 1-2, pp. 121-143, 2005.
    [26] S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach,2nd ed., Pearson Education Asia, 2011.
    [27] L. Liu, F. Yang, P. Zhang, J. Y. Wu, L. Hu. SVM basedontology matching approach. International Journal of Automationand Computing, vol. 9, no. 3, pp. 306-314, 2012.
    [28] T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits. Wellfoundedsemantics for description logic programs in the semanticweb. In Proceedings of International Workshop onRules and Rule Markup Languages for the Semantic Web,Lecture Notes in Computer Science, Springer, Hiroshima,Japan, vol. 3323, pp. 81-97, 2004.
    [29] K. Dellschaft, S. Staab. On how to perform a gold standardbased evaluation of ontology learning. In Proceedingsof Semantic Web Conference, Lecture Noates in ComputerScience, Springer, Athens, GA, USA, vol. 4273, pp. 228-241.2006.
  • 加载中
  • [1] Wei-Ning Wang, Qi Li, Liang Wang. Robust Object Tracking via Information Theoretic Measures . International Journal of Automation and Computing, 2020, 17(): 1-15.  doi: 10.1007/s11633-020-1235-2
    [2] Wen-Bin Zhong, Xi-Chun Luo, Wen-Long Chang, Yu-Kui Cai, Fei Ding, Hai-Tao Liu, Ya-Zhou Sun. Toolpath Interpolation and Smoothing for Computer Numerical Control Machining of Freeform Surfaces: A Review . International Journal of Automation and Computing, 2020, 17(1): 1-16.  doi: 10.1007/s11633-019-1190-y
    [3] Kittinun Aukkapinyo, Suchakree Sawangwong, Parintorn Pooyoi, Worapan Kusakunniran. Localization and Classification of Rice-grain Images Using Region Proposals-based Convolutional Neural Network . International Journal of Automation and Computing, 2020, 17(2): 233-246.  doi: 10.1007/s11633-019-1207-6
    [4] Ruo-Mu Tan, Yi Cao. Multi-layer Contribution Propagation Analysis for Fault Diagnosis . International Journal of Automation and Computing, 2019, 16(1): 40-51.  doi: 10.1007/s11633-018-1142-y
    [5] Siuly Siuly, Varun Bajaj, Abdulkadir Sengur, Yanchun Zhang. An Advanced Analysis System for Identifying Alcoholic Brain State Through EEG Signals . International Journal of Automation and Computing, 2019, 16(6): 737-747.  doi: 10.1007/s11633-019-1178-7
    [6] Meng-Yang Zhang, Guo-Hui Tian, Ci-Ci Li, Jing Gong. Learning to Transform Service Instructions into Actions with Reinforcement Learning and Knowledge Base . International Journal of Automation and Computing, 2018, 15(5): 582-592.  doi: 10.1007/s11633-018-1128-9
    [7] Min Tan, Yu Sun, Junzhi Yu. Editorial for Special Issue on Intelligent Control and Computing in Advanced Robotics . International Journal of Automation and Computing, 2018, 15(5): 513-514.  doi: 10.1007/s11633-018-1152-9
    [8] Hui Guan,  Hongji Yang,  Jun Wang. An Ontology-based Approach to Security Pattern Selection . International Journal of Automation and Computing, 2016, 13(2): 168-182.  doi: 10.1007/s11633-016-0950-1
    [9] Jinya Su,  Baibing Li,  Wen-Hua Chen. Recursive Filter with Partial Knowledge on Inputs and Outputs . International Journal of Automation and Computing, 2015, 12(1): 35-42.  doi: 10.1007/s11633-014-0864-8
    [10] Pavla Bromová,  Petr Škoda,  Jaroslav Vážný. Classification of Spectra of Emission Line Stars Using Machine Learning Techniques . International Journal of Automation and Computing, 2014, 11(3): 265-273.  doi: 10.1007/s11633-014-0789-2
    [11] Fu-Dong Li,  De Xu,  Zheng-Tao Zhang,  Ya-Li Shi. Realization of an Automated Microassembly Task Involving Micro Adhesive Bonding . International Journal of Automation and Computing, 2013, 10(6): 545-551.  doi: 10.1007/s11633-013-0752-7
    [12] Juan Zhang,  De Xu,  Zheng-Tao Zhang,  Wen-Sheng Zhang. Position/Force Hybrid Control System for High Precision Aligning of Small Gripper to Ring Object . International Journal of Automation and Computing, 2013, 10(4): 360-367.  doi: 10.1007/s11633-013-0732-y
    [13] Ushma Kesha Patel,  Purvag Patel,  Henry Hexmoor,  Norman Carver. Improving Behavior of Computer Game Bots Using Fictitious Play . International Journal of Automation and Computing, 2012, 9(2): 122-134.  doi: 10.1007/s11633-012-0625-5
    [14] Lei Liu, Feng Yang, Peng Zhang, Jing-Yi Wu, Liang Hu. SVM-based Ontology Matching Approach . International Journal of Automation and Computing, 2012, 9(3): 306-314.  doi: 10.1007/s11633-012-0649-x
    [15] Xin-Min Xu, Yao Chen, Wen-Yao Xu, Fang Gong. An Efficient Algorithm for Mobile Localization in Sensor Networks . International Journal of Automation and Computing, 2012, 9(6): 594-599 .  doi: 10.1007/s11633-012-0684-7
    [16] Biliana Alexandrova-Kabadjova, Edward Tsang, Andreas Krause. Market Structure and Information in Payment Card Markets . International Journal of Automation and Computing, 2011, 8(3): 364-370.  doi: 10.1007/s11633-011-0593-1
    [17] Tian-Guo Jin, Feng-Yang Bi. A Computer-aided Design System for Framed-mould in Autoclave Processing . International Journal of Automation and Computing, 2010, 7(3): 261-270.  doi: 10.1007/s11633-010-0501-0
    [18] Xiao-Feng Di,  Yu-Shun Fan. Implementation of Enterprises Interoperation Based on Ontology . International Journal of Automation and Computing, 2010, 7(3): 303-309.  doi: 10.1007/s11633-010-0507-7
    [19] G. Sahoo, Tapas Kumar, B. L. Rains, C. M. Bhatia. Text Extraction and Enhancement of Binary Images Using Cellular Automata . International Journal of Automation and Computing, 2009, 6(3): 254-260.  doi: 10.1007/s11633-009-0254-9
    [20] Guang-Hong Wang, Ping Jiang, Zu-Ren Feng. Extraction of Robot Primitive Control Rules from Natural Language Instructions . International Journal of Automation and Computing, 2006, 3(3): 282-290.  doi: 10.1007/s11633-006-0282-7
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5056) PDF downloads (1842) Citations (0)

Semantic Rule Based Image Visual Feature Ontology Creation

Abstract: Multimedia is one of the important communication channels for mankind. Due to the advancement in technology and enormous growth of mankind, a vast array of multimedia data is available today. This has resulted in the obvious need for some techniques for retrieving these data. This paper will give an overview of ontology-based image retrieval system for asteroideae flower family domain. In order to reduce the semantic gap between the low-level visual features of an image and the high-level domain knowledge, we have incorporated a concept of multi-modal image ontology. So, the created asteroideae flower domain specific ontology would have the knowledge about the domain and the visual features. The visual features used to define the ontology are prevalent color, basic intrinsic pattern and contour gradient. In prevalent color extraction, the most dominant color from the images was identified and indexed. In order to determine the texture pattern for a particular flower, basic intrinsic patterns were used. The contour gradients provide the information on the image edges with respect to the image base. These feature values are embedded in the ontology at appropriate slots with respect to the domain knowledge. This paper also defines some of the query axioms which are used to retrieve appropriate information from the created ontology. This ontology can be used for image retrieval system in semantic web.

R. I. Minu and K. K. Thyagharajan. Semantic Rule Based Image Visual Feature Ontology Creation. International Journal of Automation and Computing, vol. 11, no. 5, pp. 489-499, 2014. doi: 10.1007/s11633-014-0832-3
Citation: R. I. Minu and K. K. Thyagharajan. Semantic Rule Based Image Visual Feature Ontology Creation. International Journal of Automation and Computing, vol. 11, no. 5, pp. 489-499, 2014. doi: 10.1007/s11633-014-0832-3
Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return