Volume 8 Number 2
May 2011
Article Contents
Ponnusamy Kumar and A. Krishnan. Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Erroneous Channel and Capture Effects. International Journal of Automation and Computing, vol. 8, no. 2, pp. 236-243, 2011. doi: 10.1007/s11633-011-0578-0
Cite as: Ponnusamy Kumar and A. Krishnan. Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Erroneous Channel and Capture Effects. International Journal of Automation and Computing, vol. 8, no. 2, pp. 236-243, 2011. doi: 10.1007/s11633-011-0578-0

Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Erroneous Channel and Capture Effects

  • Received: 2009-11-30
  • This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic access method. The aggregate throughput of a practical wireless local area network (WLAN) strongly depends on the channel conditions. In a real radio environment, the received signal power at the access point from a station is subjected to deterministic path loss, shadowing, and fast multipath fading. The binary exponential backoff (BEB) mechanism of IEEE 802.11 DCF severely suffers from more channel idle time under high bit error rate (BER). To alleviate the low performance of IEEE 802.11 DCF, a new mechanism is introduced, which greatly outperforms the existing methods under a high BER. A multidimensional Markov chain model is used to characterize the behavior of DCF in order to account both non-ideal channel conditions and capture effects.
  • 加载中
  • [1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Standard 802.11, 1999.
    [2] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, vol.18, no.3, pp.535-547, 2000.
    [3] Y. S. Liaw, A. Dadej, A. Jayasuriya. Performance analysis of IEEE 802.11 DCF under limited load. In Proceedings of Asia-pacific Conference on Communications, IEEE, Perth, Australia, pp.759-763, 2005.
    [4] Y. Kwon, Y. Fang, H. Latchman. Design of MAC protocols with fast collision resolution for wireless local area networks. IEEE Transactions on Wireless Communications, vol.3, no.3, pp.793-807, 2004.
    [5] F. Cali, M. Conti, E. Gregori. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, vol.8, no.6, pp.785-799, 2000.
    [6] D. Malone, K. Duffy, D. Leith. Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, vol.15, no.1, pp.159-172, 2007.
    [7] H. Minooei, H. Nojumi. Performance evaluation of a new backoff method for IEEE 802.11. Computer Communications, vol.30, no.18, pp.3698-3704, 2007.
    [8] M. Ergen, P. Varaiya. Formulation of distributed coordination function of IEEE 802.11 for asynchronous networks: Mixed data rate and packet size. IEEE Transactions on Vehicular Technology, vol.57, no.1, pp.436-447, 2008.
    [9] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin. Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects. IEEE Transactions on Wireless Communications, vol.7, no.4, pp.1276-1286, 2008.
    [10] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, M. Zanolo. Saturation throughput analysis of IEEE 802.11 in the presence of non ideal transmission channel and capture effects. IEEE Transactions on Communications, vol.56, no.7, pp.1178-1188, 2008.
    [11] T. D. Senthilkumar, A. Krishnan, P. Kumar. Nonsaturation throughput analysis of IEEE 802.11 distributed coordination function. In Proceedings of Annual IEEE India Conference, IEEE, Kanpur, India, pp.154-158, 2008.
    [12] Z. Hadzi-Velkov, B. Spasenovski. Capture effect in IEEE 802.11 basic service area under influence of Rayleigh fading and near/far effect. In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, IEEE, Lisboa, Portugal, vol.1, pp.172-176, 2002.
    [13] T. D. Senthilkumar, A. Krishnan, P. Kumar. New approach for throughput analysis of IEEE 802.11 in AdHoc networks. In Proceedings of Annual IEEE India Conference, IEEE, Kanpur, India, pp.148-153, 2008.
    [14] N. E. Wu, S. Thavamani, X. H. Li. Reliability and feedback of multiple hop wireless networks. International Journal of Automation and Computing, vol.4, no.2, pp.125-134, 2007.
    [15] M. S. Hasan, C. Harding, H. Yu, A. Griths. Modeling delay and packet drop in networked control systems using network simulator NS2. International Journal of Automation and Computing, vol.2, no.2, pp.187-194, 2005.
    [16] J. G. Proakis. Digital Communications, 4th ed., New York, USA: McGraw Hill, 2000.
    [17] S. Haykin. Digital Communications, New York, USA: John Wiley & Sons, 1988.
    [18] The Network Simulator --- NS-2, [Online], Available: http://www.isi.edu/nsnam/ns, December 18, 2010.
    [19] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, IEEE Standard 802.11e, 2005.
  • 加载中
  • [1] Tong-Tao Li, Ting-Gang Jia, Min-Rui Fei, Huo-Sheng Hu. Time Delay Characteristic of Industrial Wireless Networks Based on IEEE 802.15.4a . International Journal of Automation and Computing, 2011, 8(2): 170-176.  doi: 10.1007/s11633-011-0570-8
    [2] Dhanasekaran Senthilkumar,  A. Krishnan. Nonsaturation Throughput Enhancement of IEEE 802.11b Distributed Coordination Function for Heterogeneous Traffic under Noisy Environment . International Journal of Automation and Computing, 2010, 7(1): 95-104.  doi: 10.1007/s11633-010-0095-6
    [3] Dhanasekaran Senthilkumar,  A. Krishnan. Throughput Analysis of IEEE 802.11 Multirate WLANs with Collision Aware Rate Adaptation Algorithm . International Journal of Automation and Computing, 2010, 7(4): 571-577.  doi: 10.1007/s11633-010-0542-4
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (6197) PDF downloads (4698) Citations (0)

Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Erroneous Channel and Capture Effects

Abstract: This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic access method. The aggregate throughput of a practical wireless local area network (WLAN) strongly depends on the channel conditions. In a real radio environment, the received signal power at the access point from a station is subjected to deterministic path loss, shadowing, and fast multipath fading. The binary exponential backoff (BEB) mechanism of IEEE 802.11 DCF severely suffers from more channel idle time under high bit error rate (BER). To alleviate the low performance of IEEE 802.11 DCF, a new mechanism is introduced, which greatly outperforms the existing methods under a high BER. A multidimensional Markov chain model is used to characterize the behavior of DCF in order to account both non-ideal channel conditions and capture effects.

Ponnusamy Kumar and A. Krishnan. Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Erroneous Channel and Capture Effects. International Journal of Automation and Computing, vol. 8, no. 2, pp. 236-243, 2011. doi: 10.1007/s11633-011-0578-0
Citation: Ponnusamy Kumar and A. Krishnan. Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Erroneous Channel and Capture Effects. International Journal of Automation and Computing, vol. 8, no. 2, pp. 236-243, 2011. doi: 10.1007/s11633-011-0578-0
Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return