Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev, Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 571-579. doi: 10.1007/s11633-014-0846-x
引用本文: Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev, Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 571-579. doi: 10.1007/s11633-014-0846-x
Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev and Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits. International Journal of Automation and Computing, vol. 11, no. 6, pp. 571-579, 2014 doi:  10.1007/s11633-014-0846-x
Citation: Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev and Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits. International Journal of Automation and Computing, vol. 11, no. 6, pp. 571-579, 2014 doi:  10.1007/s11633-014-0846-x

Simulation of Analog Costas Loop Circuits

doi: 10.1007/s11633-014-0846-x
基金项目: 

This work was supported by Academy of Finland, Russian Ministry of Education and Science (Federal Target Program), and Russian Foundation for Basic Research and Saint-Petersburg State University.

详细信息
    作者简介:

    Marat V. Yuldashev received his Ph.D. degree from Saint-Petersburg State University, Russia in 2013. He is currently an associate professor in Saint-Petersburg University. His research interests include nonlinear models of Costas loops. E-mail: maratyv@gmail.com

Simulation of Analog Costas Loop Circuits

Funds: 

This work was supported by Academy of Finland, Russian Ministry of Education and Science (Federal Target Program), and Russian Foundation for Basic Research and Saint-Petersburg State University.

  • 摘要: The analysis of stability and numerical simulation of Costas loop circuits for the high-frequency signals is a challenging task. The problem lies in the fact that it is necessary to observe very fast time scale of input signals and slow time scale of signal's phases simultaneously. To overcome this difficulty, it is possible to follow the classical ideas of Gardner and Viterbi to construct a mathematical model of Costas loop, in which only slow time change of signal's phases and frequencies is considered. Such an construction, in turn, requires the computation of phase detector characteristic, depending on the waveforms of the considered signals. In this paper, the problems of nonlinear analysis of Costas loops and the approaches to the simulation of the classical Costas loop, the quadrature phase shift keying (QPSK) Costas loop, and the two-phase Costas loop are discussed. The analytical method for the computation of phase detector characteristics of Costas loops is described.
  • [1] R. E. Best. Phase Locked Loops: Design, Simulation, and Applications, 6th ed., New York: McGraw-Hill, 2007.
    [2] Y. Shmaliy. Continuous-time Systems, Netherlands: Springer, 2007.
    [3] F. M. Gardner. Phase-lock Techniques, New York: John Wiley and Son, 1966.
    [4] W. C. Lindsey, M. K. Simón. Telecommunication Systems Engineering, New jersey: Prentice Hall, 1973.
    [5] M. B. Pursley. Introduction to Digital Communications, New jersey: Prentice Hall, 2005.
    [6] J. P. Costas. Synchronous communications. Proceedings of the IRE, vol. 44, no. 12, pp. 1713-1718, 1956.
    [7] G.W.Waters. Costas Loop QPSK Demodulator, US Patent 4344178, USA, August 1982.
    [8] I. B. Djordjevic,M. C. Stefanovic, S. S. Ilic, G. T. Djordjevic. An example of a hybrid system: Coherent optical system with Costas loop in receiver-system for transmission in baseband. Journal of Lightwave Technology, vol. 16, no. 2, pp. 177-183, 1998.
    [9] E. D. Kaplan, C. J. Hegarty. Understanding GPS: Principles and Applications, Boston, USA: Artech House, 2006.
    [10] D. Doberstein. Fundamentals of GPS Receivers: A Hardware Approach, New York: Springer, 2011.
    [11] R. D. Stephens. Phase-Locked Loops for Wireless Communications: Digital, Analog and Optical Implementations, New York: Springer, 2002.
    [12] Y. Wang, W. R. Leeb. A 90° optical fiber hybrid for optimal signal power utilization. Applied Optics, vol. 26, no. 19, pp. 4181-4184, 1987.
    [13] T. Miyazaki, S. Ryu, Y. Namihira, H. Wakabayashi. Optical Costas loop experiment using a novel optical 90° hybrid module and a semiconductor-laser-amplifier external phase adjuster. In Proceedings of Optical Fiber Communication, Optical Society of America, San Diego, California, pp.WH6, 1991.
    [14] I. B. Djordjevic, M. C. Stefanovic. Performance of optical heterodyne PSK Systems with Costas loop in multichannel environment for nonlinear second-order PLL model. Journal of Lightwave Technology, vol. 17, no. 12, pp. 2470-2479, 1999.
    [15] K. Hasegawa, H. Kanetsuna, M. Wakamori. GPS Positioning Method and GPS Reception Apparatus, EP Patent 1092987A2, USA, April 2001.
    [16] P. S. Cho. Optical phase-locked loop performance in homodyne detection using pulsed and CW LO. In Proceedings of Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, Optical Society of America, Whistler, Canada, pp. JWB24, 2006.
    [17] Y. Hayami, F. Imai, K. Iwashita. Linewidth investigation for costas loop phase-diversity homodyne detection in digital coherent detection system. In Proceedings of the Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, IEEE, Shanghai, China, pp. 1-3, 2008.
    [18] G. M. Helaluddin. An improved optical costas loop PSK receiver: Simulation analysis. Journal of Scientific & Industrial Research, vol. 67, pp. 203-208, 2008.
    [19] N. Nowsheen, C. Benson, M. Frater. Design of a high frequency FPGA acoustic modem for underwater communication. In Proceedings of IEEE OCEANS, IEEE, Sydney, Australia, pp. 1-6, 2010.
    [20] D. Abramovitch. Phase-locked loops: A control centric tutorial. In Proceedings of the 2002 American Control Conference, IEEE, Anchorage, AK, USA, vol. 1, pp. 1-15, 2002.
    [21] D. Y. Abramovitch. Lyapunov Redesign of analog phaselock loops. IEEE Transactions on Communications, vol. 38, no. 12, pp. 2197-2202, 1990.
    [22] K. Watada, T. Endo, H. Seishi. Shilnikov orbits in an autonomous third-order chaotic phase-locked loop. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 9, pp. 979-983, 1998.
    [23] M. Hinz, I. Konenkamp, E. H. Horneber. Behavioral modeling and simulation of phase-locked loops for RF front ends. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, IEEE, Lansing, MI, USA, pp. 194-197, 2000.
    [24] A. Rantzer. Almost global stability of phase-locked loops. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE, Orlando, FL, USA, vol. 1, pp. 899-900, 2001.
    [25] N. E. Wu. Analog phaselock loop design using Popov criterion. In Proceedings of the 2002 American Control Conference, IEEE, Anchorage, AK, USA, vol. 1, pp. 16-18, 2002.
    [26] J. R. C. Piqueira, L. H. A. Monteiro. Considering secondharmonic terms in the operation of the phase detector for second-order phase-locked loop. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 6, pp. 805-809, 2003.
    [27] A. Suarez, R. Quere. Stability Analysis of Nonlinear Microwave Circuits, New Jersey: Artech House, 2003.
    [28] W. I. Margaris. Theory of the Non-Linear Analog Phase Locked Loop, New Jersey: Springer Verlag, 2004.
    [29] G. D. Vendelin, A. M. Pavio, U. L. Rohde. Microwave Circuit Design Using Linear and Nonlinear Techniques, New York: Wiley, 2005.
    [30] P. Goyal, X. L. Lai, J. Roychowdhury. A fast methodology for first-time-correct design of PLLs using nonlinear phasedomain VCO macromodels. In Proceedings of the 2006 Asia and South Pacific Conference on Design Automation, IEEE, Yokohama, Japan, pp. 291-296, 2006.
    [31] V. V. Matrosov. Nonlinear dynamics of phase-locked loop with the second-order filter. Radiophysics and Quantum Electronics, vol. 49, no. 3, pp. 239-249, 2006.
    [32] J. Kudrewicz, S. Wasowicz. Equations of Phase-locked Loops: Dynamics on the Circle, Torus and Cylinder, vol. 59, Singapore: World Scientific Publishing Company, 2007.
    [33] O. Feely. Nonlinear dynamics of discrete-time circuits: A survey. International Journal of Circuit Theory and Applications, no. 35, no. 5-6, pp. 515-531, 2007.
    [34] N. V. Kuznetsov. Stability and Oscillations of Dynamical Systems: Theory and Applications, Jyväskylä: Jyväskylä University Printing House, 2008.
    [35] T. C. Wang, T. Y. Chiou, S. Lall. Nonlinear Phase-locked Loop design using semidefinite programming. In Proceedings of the 16th Mediterranean Conference on Control and Automation, IEEE, Ajaccio, France, pp. 1640-1645, 2008.
    [36] J. Stensby. VCO sweep-rate limit for a phase-lock loop. Journal of the Franklin Institute, vol. 346, no. 3, pp. 223-236, 2009.
    [37] C. Wiegand, C. Hedayat, U. Hilleringmann. Non-linear behaviour of charge-pump phase-locked loops. Advances in Radio Science, vol. 8, pp. 161-166, 2010.
    [38] P. F. Curran, C. Bi, O. Feely. Dynamics of charge-pump phase-locked loops. International Journal of Circuits Theory and Applications, vol. 41, no. 11, pp. 1109-1135, 2013.
    [39] A. Suarez, E. Fernandez, F. Ramirez, S. Sancho. Stability and bifurcation analysis of self-oscillating quasi-periodic regimes. IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 528-541, 2012.
    [40] T. Banerjee, B. C. Sarkar. Conventional and extended time-delayed feedback controlled zero-crossing digital phase locked loop. International Journal of Bifurcation and Chaos, vol. 22, no. 12, pp. 1230044, 2012.
    [41] A. S. Huque, J. Stensby. An analytical approximation for the pull-out frequency of a PLL employing a sinusoidal phase detector. ETRI Journal, vol. 35, no. 2, pp. 218-225, 2013.
    [42] C. Chicone, M. T. Heitzman. Phase-locked loops, demodulation, and averaging approximation time-scale extensions. SIAM Journal on Applied Dynamical Systems, vol. 12, no. 2, pp. 674-721, 2013.
    [43] M. C. Jeruchim, P. Balaban, K. S. Shanmugan. Simulation of Communication Systems: Modeling, Methodology and Techniques, New York: Springer, 2000.
    [44] D. Banerjee. PLL Performance, Simulation and Design, 4th ed., USA: Dog Ear Publishing, 2006.
    [45] D. O. Pederson, K. Mayaram. Analog Integrated Circuits for Communication: Principles, Simulation and Design, 2nd edition, New York: Springer, 2008.
    [46] W. Tranter, T. Bose, R. Thamvichai. Basic Simulation Models of Phase Tracking Devices Using MATLAB. Synthesis Lectures on Communications, San Rafael, CA, USA: Morgan & Claypool Publishers, 2010.
    [47] A. Al-Harasees, G. O. Al-Maaitah. Overshoot Improvement for Indirect Frequency Synthesizer Phase Locked Loop. International Journal of Electrical, Electronics and Computer Systems, vol. 15, no. 1, pp. 1011-1023, 2013.
    [48] D. Y. Abramovitch. Efficient and flexible simulation of phase locked loops, Part I: Simulator design. In Proceedings of the 2008 American Control Conference, IEEE, Seattle, WA, USA, pp. 4672-4677, 2008.
    [49] D. Y. Abramovitch. Efficient and flexible simulation of phase locked loops, Part II: Post processing and a design example. In Proceedings of the 2008 American Control Conference, IEEE, Seattle, WA, USA, pp. 4678-4683, 2008.
    [50] S. A. Tretter. Communication System Design Using DSP Algorithms: With Laboratory Experiments for the TMS320C6713TM DSK, New York: Springer, 2008.
    [51] X. L. Lai, Y. Y. Wan, J. S. Roychowdhury. Fast PLL simulation using nonlinear VCO macromodels for accurate prediction of jitter and cycle-slipping due to loop non-idealities and supply noise. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference, ACM Press, New York, USA, pp. 459-464, 2005.
    [52] A. Viterbi. Principles of Coherent Communication, New York: McGraw-Hill, 1966.
    [53] G. A. Leonov. Computation of phase detector characteristics in phase locked loops for clock synchronization. Doklady Mathematics, vol. 78, no. 1, pp. 643-645, 2008.
    [54] N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi. Nonlinear analysis of the Costas loop and phase-locked loop with squarer. In Proceedings of the IASTED International Conference on Signal and Image Processing, Honolulu, Hawaii, USA, pp. 1-7, 2009.
    [55] N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Nonlinear analysis of phase-locked loop. In Proceedings of the 4th IFAC International Workshop on Periodic Control Systems, IFAC, Turkey, pp. 34-38, 2010.
    [56] N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Highfrequency analysis of phase-locked loop and phase detector characteristic computation. In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics, SciTePress, the Netherlands, vol. 1, pp. 272-278, 2011.
    [57] N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Analytical methods for computation of phasedetector characteristics and PLL design. In Proceedings of the 10th International Symposium on Signals, Circuits and Systems, IEEE, Iasi, Romania, pp. 1-4, 2011.
    [58] N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Nonlinear mathematical models of Costas Loop for general waveform of input signal. In Proceedings of the 4th IEEE International Conference on Nonlinear Science and Complexity, IEEE, Budapest, Hungary, pp. 75-80, 2012.
    [59] G. A. Leonov, N. V. Kuznetsov, M. V. Yuldahsev, R. V. Yuldashev. Analytical method for computation of phasedetector characteristic. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 633-637, 2012.
    [60] R. E. Best, N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Discontinuity and complexity in nonlinear physical systems. Nonlinear Systems and Complexity, vol. 6, New York: Springer, 2014.
    [61] G. A. Leonov, N. V. Kuznetsov, M. V. Yuldahsev, R. V. Yuldashev. Computation of phase detector characteristics in synchronization systems. Doklady Mathematics, vol. 84, no. 1, pp. 586-590, 2011.
    [62] G. A. Leonov, N. V. Kuznetsov, S. M. Seledzhi. Analysis of phase-locked systems with discontinuous characteristics. In Proceedings of the 1st IFAC Conference on Analysis and Control of Chaotic Systems, IFAC, France, vol. 1, pp. 107-112, 2006.
    [63] N. V. Kuznetsov, G. A. Leonov, S. S. Seledzhi. Phase locked loops design and analysis. In Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, pp. 114-118, 2008.
    [64] N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev. Simulation of phase-locked loops in phase-frequency domain. In Proceedings of the 4th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, IEEE, St. Petersburg, Russia, pp. 351-356, 2012.
    [65] N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Nonlinear analysis of Costas loop circuit. In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics, IFAC, Rome, Italy, vol. 1, pp. 557-560, 2012.
    [66] N. Krylov, N. Bogolyubov. Introduction to Non-linear Mechanics, Princeton: Princeton University Press, 1947.
    [67] Y. A. Mitropolsky, N. Bogolubov. Asymptotic Methods in the Theory of Non-linear Oscillations, New York: Gordon and Breach, 1961.
    [68] G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev. Differential equations of Costas loop. Doklady Mathematics, vol. 86, no. 2, pp. 723-728, 2012.
    [69] N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev. Analytical computation of phase-detector characteristics and dynamical model of Costas loop for nonsinusoidal signals. IEEE Transactions on Circuits and Systems I, to be published.
    [70] G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev. Analytical computation of phase-detector characteristics and dynamical model of QPSK Costas loop. Doklady Mathematics, to be published.
  • [1] Hai-Rong Fang, Peng-Fei Liu, Hui Yang, Bing-Shan Jiang.  Design and analysis of a novel 2T2R parallel mechanism with the closed loop limbs . International Journal of Automation and Computing, 2021, 18(): 1-13. doi: 10.1007/s11633-021-1294-z
    [2] Muhammad A. Wardeh, Samuel Frimpong.  Kinematic Analysis of an Under-actuated, Closed-loop Front-end Assembly of a Dragline Manipulator . International Journal of Automation and Computing, 2020, 17(4): 527-538. doi: 10.1007/s11633-019-1217-4
    [3] Hai-Qiang Zhang, Hai-Rong Fang, Bing-Shan Jiang.  Motion-force Transmissibility Characteristic Analysis of a Redundantly Actuated and Overconstrained Parallel Machine . International Journal of Automation and Computing, 2019, 16(2): 150-162. doi: 10.1007/s11633-018-1156-5
    [4] Zhi-Chao Song, Yuan-Zheng Ge, Hong Duan, Xiao-Gang Qiu.  Agent-based Simulation Systems for Emergency Management . International Journal of Automation and Computing, 2016, 13(2): 89-98. doi: 10.1007/s11633-016-0958-6
    [5] Ismail Bendaas, Farid Naceri, Sebti Belkacem.  Improving Asynchronous Motor Speed and Flux Loop Control by Using Hybrid Fuzzy-SMC Controllers . International Journal of Automation and Computing, 2014, 11(4): 361-367. doi: 10.1007/s11633-014-0801-x
    [6] Jiri Vojtesek, Petr Dostal.  Optimal Choice of Weighting Factors in Adaptive Linear Quadratic Control . International Journal of Automation and Computing, 2014, 11(3): 241-248. doi: 10.1007/s11633-014-0786-5
    [7] František Gazdoš.  Introducing a New Tool for Studying Unstable Systems . International Journal of Automation and Computing, 2014, 11(6): 580-587. doi: 10.1007/s11633-014-0844-z
    [8] Jie Chen, Cun-Bao Ma, Dong Song.  Kinetic Characteristics Analysis of Aircraft During Heavy Cargo Airdrop . International Journal of Automation and Computing, 2014, 11(3): 313-319. doi: 10.1007/s11633-014-0794-5
    [9] Joarder Mohammad Mustafa Kamal, Mohammad Shahidul Hasan, Alison L. Griffiths, Hongnian Yu.  Development and Verification of Simulation Model Based on Real MANET Experiments for Transport Layer Protocols (UDP and TCP) . International Journal of Automation and Computing, 2013, 10(1): 53-63 . doi: 10.1007/s11633-013-0696-y
    [10] Kathryn Stockwell,  Sarah Dunnett.  Application of a Reliability Model Generator to a Pressure Tank System . International Journal of Automation and Computing, 2013, 10(1): 9-17 . doi: 10.1007/s11633-013-0691-3
    [11] Quan Liang, Yuan-Zhuo Wang, Yong-Hui Zhang.  Resource Virtualization Model Using Hybrid-graph Representation and Converging Algorithm for Cloud Computing . International Journal of Automation and Computing, 2013, 10(6): 597-606. doi: 10.1007/s11633-013-0758-1
    [12] Analysis of Nonlinear Electrical Circuits Using Bernstein Polynomials . International Journal of Automation and Computing, 2012, 9(1): 81-86. doi: 10.1007/s11633-012-0619-3
    [13] Xin-Min Xu, Yao Chen, Wen-Yao Xu, Fang Gong.  An Efficient Algorithm for Mobile Localization in Sensor Networks . International Journal of Automation and Computing, 2012, 9(6): 594-599 . doi: 10.1007/s11633-012-0684-7
    [14] Arthur Anyakwo,  Crinela Pislaru,  Andrew Ball.  A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact . International Journal of Automation and Computing, 2012, 9(3): 237-247. doi: 10.1007/s11633-012-0640-6
    [15] Chun-Mu Wu, Paul P. Lin, Zhen-Yu Han, Shu-Rong Li.  Simulation-based Optimal Design of α-β-γ-δ Filter . International Journal of Automation and Computing, 2010, 7(2): 247-253. doi: 10.1007/s11633-010-0247-8
    [16] Bin-Rui Wang, Ying-Lian Jin, Dong Wei.  Modeling of Pneumatic Muscle with Shape Memory Alloy and Braided Sleeve . International Journal of Automation and Computing, 2010, 7(3): 283-288. doi: 10.1007/s11633-010-0504-x
    [17] O. M. Mohamed Vall, R. M'hiri.  An Approach to Polynomial NARX/NARMAX Systems Identification in a Closed-loop with Variable Structure Control . International Journal of Automation and Computing, 2008, 5(3): 313-318. doi: 10.1007/s11633-008-0313-7
    [18] KKB Hon, BT Hang Tuah Baharudin.  The Impact of High Speed Machining on Computing and Automation . International Journal of Automation and Computing, 2006, 3(1): 63-68. doi: 10.1007/s11633-006-0063-3
    [19] Xiao-Qi Ma,  Xiao-Chun Cheng.  Formal Verification of the Merchant Registration Phase of the SET Protocol . International Journal of Automation and Computing, 2005, 2(2): 155-162. doi: 10.1007/s11633-005-0155-5
    [20] Xian-Ku Zhang,  Yi-Cheng Jin.  Transfigured Loop Shaping Controller and its Application to Underwater Vehicle . International Journal of Automation and Computing, 2005, 2(1): 48-51. doi: 10.1007/s11633-005-0048-7
  • 加载中
计量
  • 文章访问数:  5210
  • HTML全文浏览量:  42
  • PDF下载量:  7582
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-26
  • 修回日期:  2013-10-11

Simulation of Analog Costas Loop Circuits

doi: 10.1007/s11633-014-0846-x
    基金项目:

    This work was supported by Academy of Finland, Russian Ministry of Education and Science (Federal Target Program), and Russian Foundation for Basic Research and Saint-Petersburg State University.

    作者简介:

    Marat V. Yuldashev received his Ph.D. degree from Saint-Petersburg State University, Russia in 2013. He is currently an associate professor in Saint-Petersburg University. His research interests include nonlinear models of Costas loops. E-mail: maratyv@gmail.com

摘要: The analysis of stability and numerical simulation of Costas loop circuits for the high-frequency signals is a challenging task. The problem lies in the fact that it is necessary to observe very fast time scale of input signals and slow time scale of signal's phases simultaneously. To overcome this difficulty, it is possible to follow the classical ideas of Gardner and Viterbi to construct a mathematical model of Costas loop, in which only slow time change of signal's phases and frequencies is considered. Such an construction, in turn, requires the computation of phase detector characteristic, depending on the waveforms of the considered signals. In this paper, the problems of nonlinear analysis of Costas loops and the approaches to the simulation of the classical Costas loop, the quadrature phase shift keying (QPSK) Costas loop, and the two-phase Costas loop are discussed. The analytical method for the computation of phase detector characteristics of Costas loops is described.

English Abstract

Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev, Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 571-579. doi: 10.1007/s11633-014-0846-x
引用本文: Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev, Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 571-579. doi: 10.1007/s11633-014-0846-x
Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev and Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits. International Journal of Automation and Computing, vol. 11, no. 6, pp. 571-579, 2014 doi:  10.1007/s11633-014-0846-x
Citation: Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev and Renat V. Yuldashev. Simulation of Analog Costas Loop Circuits. International Journal of Automation and Computing, vol. 11, no. 6, pp. 571-579, 2014 doi:  10.1007/s11633-014-0846-x
参考文献 (70)

目录

    /

    返回文章
    返回