Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy

Xue-Mei Niu Guo-Qin Gao Xin-Jun Liu Zhi-Ming Fang

Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu, Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(5): 555-564. doi: 10.1007/s11633-014-0826-1
引用本文: Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu, Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(5): 555-564. doi: 10.1007/s11633-014-0826-1
Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu and Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy. International Journal of Automation and Computing, vol. 11, no. 5, pp. 555-564, 2014 doi:  10.1007/s11633-014-0826-1
Citation: Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu and Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy. International Journal of Automation and Computing, vol. 11, no. 5, pp. 555-564, 2014 doi:  10.1007/s11633-014-0826-1

Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy

doi: 10.1007/s11633-014-0826-1
基金项目: 

This work was supported by National Natural Science Foundation of China (No. 51375210), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 6, 2011), Postgraduate Research and Innovation Program of Jiangsu Higher Education Institutions (No.CXLX11-0598), Jiangsu University Senior Professionals Scientific Research Foundation (No. 13JDG047).

详细信息
    作者简介:

    Xue-Mei Niu graduated from Jiangsu University, China in 2003. She received the M. Sc. degree from Jiangsu University, in 2006. She is currently a lecturer at School of Electrical and Information Engineering, Jiangsu University. Her research interests include robotics and automation, especially the control of robots. E-mail: niuxm@mail.ujs.edu.cn

Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy

Funds: 

This work was supported by National Natural Science Foundation of China (No. 51375210), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 6, 2011), Postgraduate Research and Innovation Program of Jiangsu Higher Education Institutions (No.CXLX11-0598), Jiangsu University Senior Professionals Scientific Research Foundation (No. 13JDG047).

  • 摘要: This paper presents a bio-inspired backstepping adaptive sliding mode control strategy for a novel 3 degree of freedom (3-DOF) parallel mechanism with actuation redundancy. Based on the kinematic model and the dynamic model, a sliding mode controller is designed to assure the tracking performance, and an adaptive law is introduced to approximate the system uncertainty including parameters variation, external disturbances and un-modeled part. Furthermore, a bio-inspired model is introduced to solve the inherent chattering problem of sliding mode control and provide a chattering free control. The simulation and experimental results testify that the proposed bio-inspired backstepping adaptive sliding mode control can achieve better performance (the tracking accuracy, robustness, response speed, etc.) than the conventional slide mode control.
  • [1] J. J. Yu, J. S. Dai, S. S. Bi, G. H. Zong. Numeration andtype synthesis of 3-DOF orthogonal translational parallelmanipulators. Progress in Natural Science, vol. 18, no. 5,pp. 563-574, 2008.
    [2] Z. Gao. Spatial Three Degree-of-freedom Parallel Mechanisms:Configurations, Performances and Applications,Ph.D. dissertation, University of Science and Technologyof China, China, 2009. (in Chinese)
    [3] H. J. San. Kinematic Analysis and Structural ParametersDesign of Novel Five Axes Serial-parallel Machine Tool,Ph.D. dissertation, Harbin Institute of Technology, China,2009. (in Chinese)
    [4] L. W. Tsai, S. Joshi. Comparison study of architecturesof four 3 degree-of-freedom translational parallel manipulators.In Proceedings of IEEE International Conference onRobotics and Automation, IEEE, Seoul, Korea, pp. 1283-1288, 2001.
    [5] X. J. Liu, J. S. Wang. A new methodology for optimal kinematicdesign of parallel mechanisms. Mechanism and MachineTheory, vol. 42, no. 9, pp. 1210-1224, 2007.
    [6] X. J. Liu, J. S. Wang, F. G. Xie. A Multi-axis SynchronousHybrid Mechanism, China, Patent ZL200810113768.4, January2010.
    [7] Y. M. Li, Q. S. Xu. Dynamic modeling and robust controlof a 3-PRC translational parallel kinematic machine.Robotics and Computer-integrated Manufacturing, vol. 25,no. 3, pp. 630-640, 2009.
    [8] D. Kanaan, P. Wenger, D. Chablat. Kinematic analysis of aserial-parallel machine tool: The VERNE machine. Mechanismand Machine Theory, vol. 44, no. 2, pp. 487-498, 2009.
    [9] A. Müller, T. Hufnagel. Model-based control of redundantlyactuated parallel manipulators in redundant coordinates.Robotics and Autonomous Systems, vol. 60, no. 9, pp. 563-571, 2012.
    [10] Y. X. Su, D. Sun, L. Ren, J. K. Mills. Integration of saturatedPI synchronous control and PD feedback for controlof parallel manipulators. IEEE Transactions on Robotics,vol. 22, no. 1, pp. 202-207, 2006.
    [11] W. W. Shang, S. Cong, Y. Ge. Coordination motion controlin the task space for parallel manipulators with actuationredundancy. IEEE Transactions on Control Systems Technology,vol. 10, no. 3, pp. 665-673.
    [12] H. Shen, X. Z. Wu, G. F. Liu, Z. X. Li. Hybrid position/force adaptive control of redundantly actuated parallelmanipulators. Acta Automatica Sinica, vol. 29, no. 4,pp. 567-572, 2003. (in Chinese)
    [13] M. Manderla, U. Konigorski. Modelling and control of aredundant parallel robotic manipulator-numerical simulationand experimental results. In Proceedings of IEEE InternationalConference on Control and Automation, IEEE,Christchurch, New Zealand, pp. 151-156, 2009.
    [14] J.Wu, J. S.Wang, L. P.Wang, T.M. Li. Dynamics and controlof a planar 3-DOF parallel mechanism with actuationredundancy. Mechanism and Mechanism Theory, vol. 44,no. 4, pp. 835-849, 2009.
    [15] A. Noshadi, M. Mailah. Active disturbance rejection controlof a parallel manipulator with self learning algorithm for apulsating trajectory tracking task. Scientia Iranica, vol. 19,no. 1, pp. 132-141, 2012.
    [16] V.I. Utkin, A. Sabanovic. Sliding modes applications inpower electronics and motion control systems. In Proceedingsof IEEE International Symposium on Industrial Electronics,IEEE, Bled, USA, pp. TU22-TU31, 1999.
    [17] C. C. Weng, W. S. Yu. H∞ Tracking adaptive fuzzy integralsliding mode control for parallel mechanisms. In Proceedingsof World Congress on Computational Intelligence,IEEE, Brisbane, Australia, pp. 4179-4204, 2012.
    [18] Y. Redha, H. Mustapha. Sliding mode-iterative learningcontrol applied to delta parallel robot. In Proceedings of the24th IASTED International Conference on Modelling, Identification,and Control, IEEE, Innsbruck, Austria, pp. 266-270, 2005.
    [19] G. Q. Gao, X. J. Liu, D. G. Jiang. Chattering-free slidingmode control for the parallel mechanism of a virtual axismachine tool. In Proceedings of the 29th Chinese ControlConference, IEEE, Beijing, China, pp. 5670-5675, 2010. (inChinese)
    [20] G. Q. Gao, Q. Yan, Y. Z. Wu. The control method of adaptivebackstepping and neural network in the application ofa parallel robot. In Proceedings of the 6th InternationalConference on Natural Computation, IEEE, Yantai, China,pp. 1397-1400, 2010.
    [21] F. G. Xie, X. J. Liu, J. S. Wang. A 3-DOF parallel manufacturingmodule and its kinematic optimization. Roboticsand Computer-Integrated Manufacturing, vol. 28, no. 3,pp. 334-343, 2013.
    [22] X. J. Liu, J. S. Wang, J. W. Kim. Determination of the linklengths for a spatial 3-DOF parallel manipulator. Journalof Mechanical Design, vol. 128, no. 2, pp. 365-373, 2006.
    [23] X. M. Niu, G. Q. Gao, X. J. Liu, Z. D. Bao. Dynamics andcontrol of a novel 3-DOF parallel mechanism with actuationredundancy. International Journal of Automation andComputing, vol. 10, no. 6, pp. 552-562, 2013.
    [24] J. Wu, J. S. Wang, L. P. Wang, T. M. Li. Dynamic formulationof redundant and nonredundant parallel manipulatorsfor dynamic parameter identification. Mechatronics, vol. 19,no. 4, pp. 586-590, 2009.
    [25] H. Chen, Y. K. Yiu, Z. X. Li. Dynamics and control ofredundantly actuated parallel manipulators. IEEE/ASMETransactions on Mechatronics, vol. 8, no. 4, pp. 483-491,2003.
    [26] G. Q. Gao, Y. Luo, D. G. Jiang. Precision motion controlfor the parallel mechanism of a virtual axis machine tool.In Proceedings of IEEE International Conference on Control,Automation, Robotics and Vision, IEEE, Singapore,pp. 1894-1899, 2010.
    [27] R. J. Wai, H. H. Chang. Backstepping wavelet neuralnetwork control for indirect field-oriented induction motordrive. IEEE TransactionS on Neural Networks, vol. 15,no. 2, pp. 367-382, 2004.
    [28] J. Zhao, Y. B. Liu, Y.G. Yang. A diagonal recurrent CMACmodel reference adaptive control for parallel manipulatorstrajectory tracking. In Proceedings of the 6th InternationalConference on Intelligent Systems Design and Applications,IEEE, Jinan, China, pp. 157-161, 2006.
    [29] D. Q. Zhu, R. R. Yang. Backstepping tracking control ofautonomous underwater vehicles with bio-inspired neurdynamicsmodel. Control Theory and Applications, vol. 29,no. 10, pp. 1309-1316, 2012.
    [30] A. L. Hodgkin, A. F. Huxley. A quantitative description ofmembrane current and its application to conduction and excitationin nerve. Bulletin of Mathematical Biology, vol. 52,no. 1-2, pp. 25-71, 1990.
    [31] S. Grossberg. Nonlinear neural networks: principles, mechanisms,and architecture. Neural Networks, vol. 1, no. 1,pp. 17-61, 1998.
  • [1] Hai-Rong Fang, Peng-Fei Liu, Hui Yang, Bing-Shan Jiang.  Design and Analysis of a Novel 2T2R Parallel Mechanism with the Closed-loop Limbs . International Journal of Automation and Computing, 2021, 18(): 1-13. doi: 10.1007/s11633-021-1294-z
    [2] Hai-Rong Fang, Tong Zhu, Hai-Qiang Zhang, Hui Yang, Bing-Shan Jiang.  Design and Analysis of a Novel Hybrid Processing Robot Mechanism . International Journal of Automation and Computing, 2020, 17(3): 403-416. doi: 10.1007/s11633-020-1228-1
    [3] Hai-Qiang Zhang, Hai-Rong Fang, Bing-Shan Jiang.  Motion-force Transmissibility Characteristic Analysis of a Redundantly Actuated and Overconstrained Parallel Machine . International Journal of Automation and Computing, 2019, 16(2): 150-162. doi: 10.1007/s11633-018-1156-5
    [4] Brian D. O. Anderson, Mengbin Ye.  Recent Advances in the Modelling and Analysis of Opinion Dynamics on Influence Networks . International Journal of Automation and Computing, 2019, 16(2): 129-149. doi: 10.1007/s11633-019-1169-8
    [5] Bing-Shan Jiang, Hai-Rong Fang, Hai-Qiang Zhang.  Type Synthesis and Kinematics Performance Analysis of a Class of 3T2R Parallel Mechanisms with Large Output Rotational Angles . International Journal of Automation and Computing, 2019, 16(6): 775-785. doi: 10.1007/s11633-019-1192-9
    [6] Mahmood Mazare, Mostafa Taghizadeh, M. Rasool Najafi.  Kinematic Analysis and Design of a 3-DOF Translational Parallel Robot . International Journal of Automation and Computing, 2017, 14(4): 432-441. doi: 10.1007/s11633-017-1066-y
    [7] Dang-Dang Niu, Lei Liu, Xin Zhang, Shuai Lü, Zhuang Li.  Security Analysis Model, System Architecture and Relational Model of Enterprise Cloud Services . International Journal of Automation and Computing, 2016, 13(6): 574-584. doi: 10.1007/s11633-016-1014-2
    [8] Nabiha Touijer, Samira Kamoun.  Robust Self-tuning Control Based on Discrete-time Sliding Mode for Auto-regressive Mathematical Model in the Presence of Unmodelled Dynamics . International Journal of Automation and Computing, 2016, 13(3): 277-284. doi: 10.1007/s11633-015-0921-y
    [9] Peng Wu, Qing-Yuan Wang, Xiao-Yun Feng.  Automatic Train Operation Based on Adaptive Terminal Sliding Mode Control . International Journal of Automation and Computing, 2015, 12(2): 142-148. doi: 10.1007/s11633-015-0877-y
    [10] Jessica Davies, Roger Dixon, Roger M. Goodall, Thomas Steffen.  Multi-agent Control of High Redundancy Actuation . International Journal of Automation and Computing, 2014, 11(1): 1-9. doi: 10.1007/s11633-014-0759-8
    [11] K. Jamoussi, L. Chrifi-Alaoui, H. Benderradji, A. El Hajjaji, M. Ouali.  Robust Sliding Mode Control Using Adaptive Switching Gain for Induction Motors . International Journal of Automation and Computing, 2013, 10(4): 303-311. doi: 10.1007/s11633-013-0725-x
    [12] Vineet Kumar, A. P. Mittal, R. Singh.  Stability Analysis of Parallel Fuzzy P + Fuzzy I + Fuzzy D Control Systems . International Journal of Automation and Computing, 2013, 10(2): 91-98. doi: 10.1007/s11633-013-0701-5
    [13] Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu, Zhi-Da Bao.  Dynamics and Control of a Novel 3-DOF Parallel Manipulator with Actuation Redundancy . International Journal of Automation and Computing, 2013, 10(6): 552-562. doi: 10.1007/s11633-013-0753-6
    [14] Ning Li, Hai-Yi Sun, Qing-Ling Zhang.  The Dynamics and Bifurcation Control of a Singular Biological Economic Model . International Journal of Automation and Computing, 2012, 9(1): 1-7. doi: 10.1007/s11633-012-0609-5
    [15] Lei-Po Liu,  Zhu-Mu Fu,  Xiao-Na Song.  Sliding Mode Control with Disturbance Observer for Class of Nonlinear Systems . International Journal of Automation and Computing, 2012, 9(5): 487-491. doi: 10.1007/s11633-012-0671-z
    [16] Mezghani Ben Romdhane Neila,  Damak Tarak.  Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators . International Journal of Automation and Computing, 2011, 8(2): 215-220. doi: 10.1007/s11633-011-0576-2
    [17] Qing-Zheng Gao,  Xue-Jun Xie.  Robustness Analysis of Discrete-time Indirect Model Reference Adaptive Control with Normalized Adaptive Laws . International Journal of Automation and Computing, 2010, 7(3): 381-388. doi: 10.1007/s11633-010-0518-4
    [18] B. Bandyopadhyay, Alemayehu G/Egziabher Abera, S. Janardhanan, Victor Sreeram.  Sliding Mode Control Design via Reduced Order Model Approach . International Journal of Automation and Computing, 2007, 4(4): 329-334. doi: 10.1007/s11633-007-0329-4
    [19] Yong-Hua Zhang, Jian-Hui He, Jie Yang, Shi-Wu Zhang, Kin Huat Low.  A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy . International Journal of Automation and Computing, 2006, 3(4): 374-381. doi: 10.1007/s11633-006-0374-4
    [20] De Xu, Carlos A. Acosta Calderon, John Q. Gan, Huosheng Hu, Min Tan.  An Analysis of the Inverse Kinematics for a 5-DOF Manipulator . International Journal of Automation and Computing, 2005, 2(2): 114-124. doi: 10.1007/s11633-005-0114-1
  • 加载中
计量
  • 文章访问数:  4567
  • HTML全文浏览量:  34
  • PDF下载量:  1647
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-24
  • 修回日期:  2014-04-21

Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy

doi: 10.1007/s11633-014-0826-1
    基金项目:

    This work was supported by National Natural Science Foundation of China (No. 51375210), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 6, 2011), Postgraduate Research and Innovation Program of Jiangsu Higher Education Institutions (No.CXLX11-0598), Jiangsu University Senior Professionals Scientific Research Foundation (No. 13JDG047).

    作者简介:

    Xue-Mei Niu graduated from Jiangsu University, China in 2003. She received the M. Sc. degree from Jiangsu University, in 2006. She is currently a lecturer at School of Electrical and Information Engineering, Jiangsu University. Her research interests include robotics and automation, especially the control of robots. E-mail: niuxm@mail.ujs.edu.cn

摘要: This paper presents a bio-inspired backstepping adaptive sliding mode control strategy for a novel 3 degree of freedom (3-DOF) parallel mechanism with actuation redundancy. Based on the kinematic model and the dynamic model, a sliding mode controller is designed to assure the tracking performance, and an adaptive law is introduced to approximate the system uncertainty including parameters variation, external disturbances and un-modeled part. Furthermore, a bio-inspired model is introduced to solve the inherent chattering problem of sliding mode control and provide a chattering free control. The simulation and experimental results testify that the proposed bio-inspired backstepping adaptive sliding mode control can achieve better performance (the tracking accuracy, robustness, response speed, etc.) than the conventional slide mode control.

English Abstract

Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu, Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(5): 555-564. doi: 10.1007/s11633-014-0826-1
引用本文: Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu, Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(5): 555-564. doi: 10.1007/s11633-014-0826-1
Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu and Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy. International Journal of Automation and Computing, vol. 11, no. 5, pp. 555-564, 2014 doi:  10.1007/s11633-014-0826-1
Citation: Xue-Mei Niu, Guo-Qin Gao, Xin-Jun Liu and Zhi-Ming Fang. Bio-inspired Backstepping Adaptive Sliding Mode Control for Parallel Mechanism with Actuation Redundancy. International Journal of Automation and Computing, vol. 11, no. 5, pp. 555-564, 2014 doi:  10.1007/s11633-014-0826-1
参考文献 (31)

目录

    /

    返回文章
    返回