Mondal Sanjoy, Ghommam Jawhar and Saad Maarouf. An Adaptive Full Order Sliding Mode Controller for Mismatched Uncertain Systems. International Journal of Automation and Computing, vol. 14, no. 2, pp. 191-201, 2017. DOI: 10.1007/s11633-017-1057-z
Citation: Mondal Sanjoy, Ghommam Jawhar and Saad Maarouf. An Adaptive Full Order Sliding Mode Controller for Mismatched Uncertain Systems. International Journal of Automation and Computing, vol. 14, no. 2, pp. 191-201, 2017. DOI: 10.1007/s11633-017-1057-z

An Adaptive Full Order Sliding Mode Controller for Mismatched Uncertain Systems

  • In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified trajectory in presence of significant mismatched uncertainties. In the first step the dynamic model for the first state is considered by the desired tracking signal. After the first step the desired dynamic model for each state is defined by the previous one. An adaptive tuning law is developed for the FOSM controller to deal with the bounded system uncertainty. The major advantages offered by this adaptive FOSM controller are that advanced knowledge about the upper bound of the system uncertainties is not a necessary requirement and the proposed method is an effective solution for the chattering elimination from the control signal. The controller is designed considering the full-order sliding surface. System robustness and the stability of the controller are proved by using the Lyapunov technique. A systematic adaptive step by step design method using the full order sliding surface for mismatched nonlinear systems is presented. Simulation results validate the effectiveness of the proposed control law.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return