Published Online

Display Method:
Research Article
A Fast Compression Framework Based on 3D Point Cloud Data for Telepresence
Zun-Ran Wang, Chen-Guang Yang, Shi-Lu Dai
doi: 10.1007/s11633-020-1240-5
In this paper, a novel compression framework based on 3D point cloud data is proposed for telepresence, which consists of two parts. One is implemented to remove the spatial redundancy, i.e., a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box. The other part is applied to remove the temporal redundancy of the 3D point cloud data. The temporal redundancy between point clouds is removed by using the motion vector, i.e., the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame. The first, the B-SHOT (binary signatures of histograms orientation) descriptor is applied to represent the point feature for matching the corresponding point between two frames. The second, the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame. The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames. Finally, the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the current and the motion vectors are transmitted into the remote end. In order to reduce calculation time of the B-SHOT descriptor, we introduce an octree structure into the B-SHOT descriptor. In particular, in order to improve the robustness of the matching operation, we design the cluster feature to estimate the similarity between two clusters. Experimental results have shown the better performance of the proposed method due to the lower calculation time and the higher compression ratio. The proposed method achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under conditions of similar distortion rate.
A Computational Model for Measuring Trust in Mobile Social Networks Using Fuzzy Logic
Farzam Matinfar
doi: 10.1007/s11633-020-1232-5
Large-scale mobile social networks (MSNs) facilitate communications through mobile devices. The users of these networks can use mobile devices to access, share and distribute information. With the increasing number of users on social networks, the large volume of shared information and its propagation has created challenges for users. One of these challenges is whether users can trust one another. Trust can play an important role in users′ decision making in social networks, so that, most people share their information based on their trust on others, or make decisions by relying on information provided by other users. However, considering the subjective and perceptive nature of the concept of trust, the mapping of trust in a computational model is one of the important issues in computing systems of social networks. Moreover, in social networks, various communities may exist regarding the relationships between users. These connections and communities can affect trust among users and its complexity. In this paper, using user characteristics on social networks, a fuzzy clustering method is proposed and the trust between users in a cluster is computed using a computational model. Moreover, through the processes of combination, transition and aggregation of trust, the trust value is calculated between users who are not directly connected. Results show the high performance of the proposed trust inference method.
Integration of Facial Thermography in EEG-based Classification of ASD
Dilantha Haputhanthri, Gunavaran Brihadiswaran, Sahan Gunathilaka, Dulani Meedeniya, Sampath Jayarathna, Mark Jaime, Christopher Harshaw
doi: 10.1007/s11633-020-1231-6
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting social, communicative, and repetitive behavior. The phenotypic heterogeneity of ASD makes timely and accurate diagnosis challenging, requiring highly trained clinical practitioners. The development of automated approaches to ASD classification, based on integrated psychophysiological measures, may one day help expedite the diagnostic process. This paper provides a novel contribution for classifing ASD using both thermographic and EEG data. The methodology used in this study extracts a variety of feature sets and evaluates the possibility of using several learning models. Mean, standard deviation, and entropy values of the EEG signals and mean temperature values of regions of interest (ROIs) in facial thermographic images were extracted as features. Feature selection is performed to filter less informative features based on correlation. The classification process utilizes Naïve Bayes, random forest, logistic regression, and multi-layer perceptron algorithms. The integration of EEG and thermographic features have achieved an accuracy of 94% with both logistic regression and multi-layer perceptron classifiers. The results have shown that the classification accuracies of most of the learning models have increased after integrating facial thermographic data with EEG.
Simultaneous Identification of Process Structure, Parameter and Time-Delay Based on Non-Negative Garrote
Jian-Guo Wang, Qian-Ping Xiao, Tiao Shen, Shi-Wei Ma, Wen-Tao Rao, Yong-Jie Zhang
doi: 10.1007/s11633-015-0948-0
Design of Ethernet based data acquisition system for yaw rate and longitudinal velocity measurement in automobiles
K. Arun Venkatesh, N. Mathivanan
doi: 10.1007/s11633-016-0968-4