Published Online

Display Method:         

Research Articles
Type Synthesis and Kinematics Performance Analysis of a Class of 3T2R Parallel Mechanisms with Large Output Rotational Angles
Bing-Shan Jiang, Hai-Rong Fang, Hai-Qiang Zhang
Available online   doi: 10.1007/s11633-019-1192-9
Abstract PDF SpringerLink
Abstract:
Based on Lie group theory and the integration of configuration, a class of 3T2R (T denotes translation and R denotes rotation) parallel mechanisms with large output rotational angles is synthesized through a five degree of freedom single limb evolving into two five degree of freedom limbs and constraint coupling of each kinematics chain. A kind of 3T2R parallel mechanisms with large rotational angles was selected from type synthesis of 3T2R parallel mechanisms, inverse kinematics and velocity Jacobian matrix of the parallel mechanism are established. The performance indices including workspace, rotational capacity, singularity and dexterity of the parallel mechanism are analyzed. The results show that the parallel mechanism has not only large output rotational angles but also better dexterity.
Output Feedback Stabilization for MIMO Semi-linear Stochastic Systems with Transient Optimisation
Qi-Chun Zhang, Liang Hu, John Gow
Available online   doi: 10.1007/s11633-019-1193-8
Abstract PDF SpringerLink
Abstract:
This paper investigates the stabilisation problem and consider transient optimisation for a class of the multi-input-multi-output (MIMO) semi-linear stochastic systems. A control algorithm is presented via an m-block backstepping controller design where the closed-loop system has been stabilized in a probabilistic sense and the transient performance is optimisable by optimised by searching the design parameters under the given criterion. In particular, the transient randomness and the probabilistic decoupling will be investigated as case studies. Note that the presented control algorithm can be potentially extended as a framework based on the various performance criteria. To evaluate the effectiveness of this proposed control framework, a numerical example is given with simulation results. In summary, the key contributions of this paper are stated as follows: 1) one block backstepping-based output feedback control design is developed to stabilize the dynamic MIMO semi-linear stochastic systems using a linear estimator; 2) the randomness and probabilistic couplings of the system outputs have been minimized based on the optimisation of the design parameters of the controller; 3) a control framework with transient performance enhancement of multi-variable semi-linear stochastic systems has been discussed.
Continuous Probabilistic SLAM Solved via Iterated Conditional Modes
J. Gimenez, A. Amicarelli, J. M. Toibero, F. di Sciascio, R. Carelli
Available online   doi: 10.1007/s11633-019-1186-7
Abstract PDF SpringerLink
Abstract:
This article proposes a simultaneous localization and mapping (SLAM) version with continuous probabilistic mapping (CP-SLAM), i.e., an algorithm of simultaneous localization and mapping that avoids the use of grids, and thus, does not require a discretized environment. A Markov random field (MRF) is considered to model this SLAM version with high spatial resolution maps. The mapping methodology is based on a point cloud generated by successive observations of the environment, which is kept bounded and representative by including a novel recursive subsampling method. The CP-SLAM problem is solved via iterated conditional modes (ICM), which is a classic algorithm with theoretical convergence over any MRF. The probabilistic maps are the most appropriate to represent dynamic environments, and can be easily implemented in other versions of the SLAM problem, such as the multi-robot version. Simulations and real experiments show the flexibility and excellent performance of this proposal.
Multi-objective Dimensional Optimization of a 3-DOF Translational PKM Considering Transmission Properties
Song Lu, Yang-Min Li, Bing-Xiao Ding
Available online   doi: 10.1007/s11633-019-1184-9
Abstract PDF SpringerLink
Abstract:
Multi-objective dimensional optimization of parallel kinematic manipulators (PKMs) remains a challenging and worthwhile research endeavor. This paper presents a straightforward and systematic methodology for implementing the structure optimization analysis of a 3-prismatic-universal-universal (PUU) PKM when simultaneously considering motion transmission, velocity transmission and acceleration transmission. Firstly, inspired by a planar four-bar linkage mechanism, the motion transmission index of the spatial parallel manipulator is based on transmission angle which is defined as the pressure angle amongst limbs. Then, the velocity transmission index and acceleration transmission index are derived through the corresponding kinematics model. The multi-objective dimensional optimization under specific constraints is carried out by the improved non-dominated sorting genetic algorithm (NSGA II), resulting in a set of Pareto optimal solutions. The final chosen solution shows that the manipulator with the optimized structure parameters can provide excellent motion, velocity and acceleration transmission properties.
Determination of Vertices and Edges in a Parametric Polytope to Analyze Root Indices of Robust Control Quality
Sergey Gayvoronskiy, Tatiana Ezangina, Ivan Khozhaev, Viktor Kazmin
Available online   doi: 10.1007/s11633-019-1182-y
Abstract PDF SpringerLink
Abstract:
The research deals with the methodology intended to root robust quality indices in the interval control system, the parameters of which are affinely included in the coefficients of a characteristic polynomial. To determine the root quality indices we propose to depict on the root plane not all edges of the interval parametric polytope (as the edge theorem says), but its particular vertex-edge route. In order to define this route we need to know the angle sequence at which the edge branches depart from any integrated pole on the allocation area. It is revealed that the edge branches can integrate into the route both fully or partially due to intersection with other branches. The conditions which determine the intersection of one-face edge images have been proven. It is shown that the root quality indices can be determined by its ends or by any other internal point depending on a type of edge branch. The conditions which allow determining the edge branch type have been identified. On the basis of these studies we developed the algorithm intended to construct a boundary vertex-edge route on the polytope with the interval parameters of the system. As an illustration of how the algorithm can be implemented, we determined and introduced the root indices reflecting the robust quality of the system used to stabilize the position of an underwater charging station for autonomous unmanned vehicles.
HDec-POSMDPs MRS Exploration and Fire Searching Based on IoT Cloud Robotics
Ayman El Shenawy, Khalil Mohamed, Hany Harb
Available online   doi: 10.1007/s11633-019-1187-6
Abstract PDF SpringerLink
Abstract:
The multi-robot systems (MRS) exploration and fire searching problem is an important application of mobile robots which require massive computation capability that exceeds the ability of traditional MRS′s. This paper propose a cloud-based hybrid decentralized partially observable semi-Markov decision process (HDec-POSMDPs) model. The proposed model is implemented for MRS exploration and fire searching application based on the Internet of things (IoT) cloud robotics framework. In this implementation the heavy and expensive computational tasks are offloaded to the cloud servers. The proposed model achieves a significant improvement in the computation burden of the whole task relative to a traditional MRS. The proposed model is applied to explore and search for fire objects in an unknown environment; using different sets of robots sizes. The preliminary evaluation of this implementation demonstrates that as the parallelism of computational instances increase the delay of new actuation commands which will be decreased, the mean time of task completion is decreased, the number of turns in the path from the start pose cells to the target cells is minimized and the energy consumption for each robot is reduced.
Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes
Horacio Coral-Enriquez, Santiago Pulido-Guerrero, John Cortés-Romero
Available online   doi: 10.1007/s11633-019-1179-6
Abstract PDF SpringerLink
Abstract:
In this paper, the problem of load transportation and robust mitigation of payload oscillations in uncertain tower-cranes is addressed. This problem is tackled through a control scheme based on the philosophy of active-disturbance-rejection. Here, a general disturbance model built with two dominant components: polynomial and harmonic, is stated. Then, a disturbance observer is formulated through state-vector augmentation of the tower-crane model. Thus, better performance of estimations for system states and disturbances is achieved. The control law is then formulated to actively reject the disturbances but also to accommodate the closed-loop system dynamics even under system uncertainty. The proposed control schema is validated via experimentation using a small-scale tower-crane, and compared with other relevant active disturbance rejection control (ADRC)-based techniques. The experimental results show that the proposed control scheme is robust under parametric uncertainty of the system, and provides improved attenuation of payload oscillations even under system uncertainty.
Research Article
Tracking Registration Algorithm for Augmented Reality Based on Template Tracking
Peng-Xia Cao, Wen-Xin Li, Wei-Ping Ma
Available online   doi: 10.1007/s11633-019-1198-3
Abstract PDF SpringerLink
Abstract:
Tracking registration is a key issue in augmented reality applications, particularly where there are no artificial identifier placed manually. In this paper, an efficient markerless tracking registration algorithm which combines the detector and the tracker is presented for the augmented reality system. We capture the target images in real scenes as template images, use the random ferns classifier for target detection and solve the problem of reinitialization after tracking registration failures due to changes in ambient lighting or occlusion of targets. Once the target has been successfully detected, the pyramid Lucas-Kanade (LK) optical flow tracker is used to track the detected target in real time to solve the problem of slow speed. The least median of squares (LMedS) method is used to adaptively calculate the homography matrix, and then the three-dimensional pose is estimated and the virtual object is rendered and registered. Experimental results demonstrate that the algorithm is more accurate, faster and more robust.
Selection of Observation Position and Orientation in Visual Servoing with Eye-in-vehicle Configuration for Manipulator
Hong-Xuan Ma, Wei Zou, Zheng Zhu, Chi Zhang, Zhao-Bing Kang
Available online   doi: 10.1007/s11633-019-1181-z
Abstract PDF SpringerLink
Abstract:
In this paper, we propose a method to select the observation position in visual servoing with an eye-in-vehicle configuration for the manipulator. In traditional visual servoing, the images taken by the camera may have various problems, including being out of view, large perspective aberrance, improper projection area of object in images and so on. In this paper, we propose a method to determine the observation position to solve these problems. A mobile robot system with pan-tilt camera is designed, which calculates the observation position based on an observation and then moves there. Both simulation and experimental results are provided to validate the effectiveness of the proposed method.
An Advanced Analysis System for Identifying Alcoholic Brain State Through EEG Signals
Siuly Siuly, Varun Bajaj, Abdulkadir Sengur, Yanchun Zhang
Available online   doi: 10.1007/s11633-019-1178-7
Abstract PDF SpringerLink
Abstract:
This paper addresses an advanced analysis system for the identification of alcoholic brain states from electroencephalogram (EEG) data in an automatic way. This study introduces an optimum allocation based sampling (OAS) scheme to discover the most favourable representative data points from every single time-window of each EEG signal considering the minimal variability of the observations. Combining all representative samples of each time-window in a set, some statistical features are extracted from every set of each class. The Mann-Whitney U test is used to assess whether each of the features is significant between the two classes (e.g., alcoholic and control). In order to evaluate the effectiveness of the OAS-based features, four well-known machine learning methods (decision table, support vector machine (SVM), k-nearest neighbor (k-NN) and logistic regression) are considered for identification of alcoholic brain state. The experimental results on the UCI KDD (i.e., UCI knowledge discovery in databases) database demonstrate that the OAS based decision table algorithm yields the highest accuracy of 99.58% with a low false alarm rate 0.40%, which is an improvement of up to 9.58% over the existing algorithms. A proposed analysis system can be used to detect alcoholism and also to determine the level of alcoholism-related changes in EEG signals.
Expression Analysis Based on Face Regions in Read-world Conditions
Zheng Lian, Ya Li, Jian-Hua Tao, Jian Huang, Ming-Yue Niu
Available online   doi: 10.1007/s11633-019-1176-9
Abstract SpringerLink
Abstract:
Facial emotion recognition is an essential and important aspect of the field of human-machine interaction. Past research on facial emotion recognition focuses on the laboratory environment. However, it faces many challenges in real-world conditions, i.e., illumination changes, large pose variations and partial or full occlusions. Those challenges lead to different face areas with different degrees of sharpness and completeness. Inspired by this fact, we focus on the authenticity of predictions generated by different <emotion, region> pairs. For example, if only the mouth areas are available and the emotion classifier predicts happiness, then there is a question of how to judge the authenticity of predictions. This problem can be converted into the contribution of different face areas to different emotions. In this paper, we divide the whole face into six areas: nose areas, mouth areas, eyes areas, nose to mouth areas, nose to eyes areas and mouth to eyes areas. To obtain more convincing results, our experiments are conducted on three different databases: facial expression recognition + ( FER+), real-world affective faces database (RAF-DB) and expression in-the-wild (ExpW) dataset. Through analysis of the classification accuracy, the confusion matrix and the class activation map (CAM), we can establish convincing results. To sum up, the contributions of this paper lie in two areas: 1) We visualize concerned areas of human faces in emotion recognition; 2) We analyze the contribution of different face areas to different emotions in real-world conditions through experimental analysis. Our findings can be combined with findings in psychology to promote the understanding of emotional expressions.
Image Encryption Application of Chaotic Sequences Incorporating Quantum Keys
Bin Ge, Hai-Bo Luo
Available online   doi: 10.1007/s11633-019-1173-z
Abstract SpringerLink
Abstract:
This paper proposes an image encryption algorithm LQBPNN (logistic quantum and back propagation neural network) based on chaotic sequences incorporating quantum keys. Firstly, the improved one-dimensional logistic chaotic sequence is used as the basic key sequence. After the quantum key is introduced, the quantum key is incorporated into the chaotic sequence by nonlinear operation. Then the pixel confused process is completed by the neural network. Finally, two sets of different mixed secret key sequences are used to perform two rounds of diffusion encryption on the confusing image. The experimental results show that the randomness and uniformity of the key sequence are effectively enhanced. The algorithm has a secret key space greater than 2182. The adjacent pixel correlation of the encrypted image is close to 0, and the information entropy is close to 8. The ciphertext image can resist several common attacks such as typical attacks, statistical analysis attacks and differential attacks.
Image Encryption Algorithm Based on Compressive Sensing and Fractional DCT via Polynomial Interpolation
Ya-Ru Liang, Zhi-Yong Xiao
Available online   doi: 10.1007/s11633-018-1159-2
Abstract PDF SpringerLink
Abstract:
Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks
Menacer Farid, Kadri Abdelmalek, Dibi Zohir
Available online   doi: 10.1007/s11633-018-1155-6
Abstract PDF SpringerLink
Abstract:
The aim of this work is to model and analyze the behavior of a new smart nano force sensor. To do so, the carbon nanotube has been used as a suspended gate of a metal-oxide-semiconductor field-effect transistor (MOSFET). The variation of the applied force on the carbon nanotube (CNT) generates a variation of the capacity of the transistor oxide-gate and therefore the variation of the threshold voltage, which allows the MOSFET to become a capacitive nano force sensor. The sensitivity of the nano force sensor can reach 0.124 31 V/nN. This sensitivity is greater than results in the literature. We have found through this study that the response of the sensor depends strongly on the geometric and physical parameters of the CNT. From the results obtained in this study, the increase in the applied force has as a consequence an increase in the value of the threshold voltage VTh of the MOSFET. In this paper, we first used artificial neural networks to faithfully reproduce the response of the nano force sensor model. This neural model is called direct model. Then, secondly, we designed an inverse model called an intelligent sensor which allows linearization of the response of our developed force sensor.
Accurate classification of EEG signals using neural networks trained by hybrid population-physic-based algorithm
Sajjad Afrakhteh, Mohammad-Reza Mosavi, Mohammad Khishe, Ahmad Ayatollahi
Available online   doi: 10.1007/s11633-018-1158-3
Abstract PDF SpringerLink
Abstract:
An Operator based Nonlinear Vibration Control System Using a Flexible Arm with Shape Memory Alloy
Hiroki Matsumori, Ming-Cong Deng, Yuichi Noge
Available online   doi: 10.1007/s11633-018-1149-4
Abstract PDF SpringerLink
Abstract:
A Practical Approach to Representation of Real-Time Building Control Applications in Simulation
Azzedine Yahiaoui
Available online   doi: 10.1007/s11633-018-1131-1
Abstract PDF SpringerLink
Abstract:
Low-Latency Data Gathering with Reliability Guaranteeing in Heterogeneous Wireless Sensor Networks
Tian-Yun Shi, Jian Li, Xin-Chun Jia, Wei Bai, Zhong-Ying Wang, Dong Zhou
Available online   doi: 10.1007/s11633-017-1074-y
Abstract PDF SpringerLink
Abstract:
Composite Control of Nonlinear Singularly Perturbed Systems via Approximate Feedback Linearization
Aleksey Kabanov, Vasiliy Alchakov
Available online   doi: 10.1007/s11633-017-1076-9
Abstract PDF SpringerLink
Abstract:
Optimal Design of Fuzzy-AGC Based on PSO&RCGA to Improve Dynamic Stability of Interconnected Multi Area Power Systems
Ali Darvish Falehi
Available online   doi: 10.1007/s11633-017-1064-0
Abstract PDF SpringerLink
Abstract:
Study of performance and reliability of urethral valve driven by ultrasonic-vaporized steam
Zhen Hu, Xiao Li, Ting Guan
Available online   doi: 10.1007/s11633-016-1026-y
Abstract PDF SpringerLink
Abstract:
Review
Skeleton Marching-based Parallel Vascular Geometry Reconstruction Using Implicit Functions
Quan Qi, Qing-De Li, Yongqiang Cheng, Qing-Qi Hong
Available online   doi: 10.1007/s11633-019-1189-4
Abstract PDF SpringerLink
Abstract:
Fast high-precision patient-specific vascular tissue and geometric structure reconstruction is an essential task for vascular tissue engineering and computer-aided minimally invasive vascular disease diagnosis and surgery. In this paper, we present an effective vascular geometry reconstruction technique by representing a highly complicated geometric structure of a vascular system as an implicit function. By implicit geometric modelling, we are able to reduce the complexity and level of difficulty of this geometric reconstruction task and turn it into a parallel process of reconstructing a set of simple short tubular-like vascular sections, thanks to the easy-blending nature of implicit geometries on combining implicitly modelled geometric forms. The basic idea behind our technique is to consider this extremely difficult task as a process of team exploration of an unknown environment like a cave. Based on this idea, we developed a parallel vascular modelling technique, called Skeleton Marching, for fast vascular geometric reconstruction. With the proposed technique, we first extract the vascular skeleton system from a given volumetric medical image. A set of sub-regions of a volumetric image containing a vascular segment is then identified by marching along the extracted skeleton tree. A localised segmentation method is then applied to each of these sub-image blocks to extract a point cloud from the surface of the short simple blood vessel segment contained in the image block. These small point clouds are then fitted with a set of implicit surfaces in a parallel manner. A high-precision geometric vascular tree is then reconstructed by blending together these simple tubular-shaped implicit surfaces using the shape-preserving blending operations. Experimental results show the time required for reconstructing a vascular system can be greatly reduced by the proposed parallel technique.
A Novel Self-adaptive Circuit Design Technique based on Evolvable Hardware
Jun-Bin Zhang, Jin-Yan Cai, Ya-Feng Meng, Tian-Zhen Meng
Available online   doi: 10.1007/s11633-016-1000-8
Abstract PDF SpringerLink
Abstract:
Simultaneous Identification of Process Structure, Parameter and Time-Delay Based on Non-Negative Garrote
Jian-Guo Wang, Qian-Ping Xiao, Tiao Shen, Shi-Wei Ma, Wen-Tao Rao, Yong-Jie Zhang
Available online   doi: 10.1007/s11633-015-0948-0
Abstract PDF SpringerLink
Abstract:
Energy Efficient Scheduler of Aperiodic jobs for Real-Time Embedded Systems
Hussein El Ghor, E. M. Aggoune
Available online   doi: 10.1007/s11633-016-0993-3
Abstract PDF SpringerLink
Abstract:
Design of Ethernet based data acquisition system for yaw rate and longitudinal velocity measurement in automobiles
K. Arun Venkatesh, N. Mathivanan
Available online   doi: 10.1007/s11633-016-0968-4
Abstract PDF SpringerLink
Abstract:
Current Issue

2019 Vol.16 No.5

Table of Contents

ISSN 1476-8186

E-ISSN 1751-8520

CN 11-5350/TP

Editors-in-chief
Tieniu TAN, Chinese Academy of Sciences Guoping LIU, University of South Wales Huosheng HU, University of Essex
Global Visitors