Larona Pitso Ramalepa, Rodrigo S. Jamisola Jr.. A Review on Cooperative Robotic Arms with Mobile or Drones Bases. International Journal of Automation and Computing, vol. 18, no. 4, pp.536-555, 2021. https://doi.org/10.1007/s11633-021-1299-7
Citation: Larona Pitso Ramalepa, Rodrigo S. Jamisola Jr.. A Review on Cooperative Robotic Arms with Mobile or Drones Bases. International Journal of Automation and Computing, vol. 18, no. 4, pp.536-555, 2021. https://doi.org/10.1007/s11633-021-1299-7

A Review on Cooperative Robotic Arms with Mobile or Drones Bases

doi: 10.1007/s11633-021-1299-7
More Information
  • Author Bio:

    Larona Pitso Ramalepa received the B. Eng. degree in aircraft and aerospace engineering from the St Petersburg State University of Aerospace Instrumentation, Russia in 2017. He is a master student in mechatronics and industrial instrumentation at Botswana International University of Science and Technology, Botswana.His research interests include mechatronics, avionics, and robotics. E-mail: rl19100043@studentmail.biust.ac.bw (Corresponding author)ORCID iD: 0000-0002-2351-5803

    Rodrigo S. Jamisola Jr. received the B. Sc. degree in mechanical engineering from University of the Philippines-Diliman, Philippines in 1993, received the M. Eng. degree (research-based) in mechanical engineering from National University of Singapore, Singapore in 2001, received the M. Sc. degree in electrical and computer engineering from Colorado State University, USA in 2006, and received the Ph. D. degree in electronics and communications engineering from De La Salle University-Manila, Philippines in 2009. He joined De La Salle University as an assistant professor in 2008 and Toyota Motor Philippines as R&D manager in 2011. He was a post-doctoral research fellow at Daegu-Gyeongbuk Institute of Science and Technology, Korea, and then at Italian Institute of Technology, Italy. He is currently an associate professor at Botswana International University of Science and Technology, Botswana. His research interests include control of combined manipulators, machine learning, numerical optimization, and human-machine interfaces. E-mail: jamisolar@biust.ac.bwORCID iD: 0000-0002-6481-1545

  • Received Date: 2020-09-01
  • Accepted Date: 2021-04-02
  • Publish Online: 2021-05-19
  • Publish Date: 2021-06-30
  • This review paper focuses on cooperative robotic arms with mobile or drone bases performing cooperative tasks. This is because cooperative robots are often used as risk-reduction tools to human life. For example, they are used to explore dangerous places such as minefields and disarm explosives. Drones can be used to perform tasks such as aerial photography, military and defense missions, agricultural surveys, etc. The bases of the cooperative robotic arms can be stationary, mobile (ground), or drones. Cooperative manipulators allow faster performance of assigned tasks because of the available “extra hand”. Furthermore, a mobile base increases the reachable ground workspace of cooperative manipulators while a drone base drastically increases this workspace to include the aerial space. The papers in this review are chosen to extensively cover a wide variety of cooperative manipulation tasks and industries that use them. In cooperative manipulation, avoiding self-collision is one of the most important tasks to be performed. In addition, path planning and formation control can be challenging because of the increased number of components to be coordinated.

     

  • loading
  • [1]
    D. Theobold, J. Ornstein, J. G. Nichol, S. E. Kullberg. Mobile Robot Platform, U.S. Patent 7348747, March 2008.
    [2]
    F. Huber, K. Kondak, K. Krieger, D. Sommer, M. Schwarzbach, M. Laiacker, I. Kossyk, S. Parusel, S. Haddadin, A. Albu-Schäffer. First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 3452−3457, 2013. DOI: 10.1109/IROS.2013.6696848.
    [3]
    S. Kim, S. Choi, H. J. Kim. Aerial manipulation using a quadrotor with a two dof robotic arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 4990-4995, 2013. DOI: 10.1109/IROS.2013.6697077.
    [4]
    K. D. Atherton. This drone has arms, [Online], Available: https://www.popsci.com/this-is-drone-with-arms/, September 17, 2019.
    [5]
    R. S. Jamisola Jr, P. S. Kormushev, R. G. Roberts, D. G. Caldwell. Task-space modular dynamics for dual-arms expressed through a relative Jacobian. Journal of Intelligent &Robotic Systems, vol. 83, no. 2, pp. 205–218, 2016.
    [6]
    R. S. Jamisola, P. Kormushev, D. G. Caldwell, F. Ibikunle. Modular relative jacobian for dual-arms and the wrench transformation matrix. In Proceedings of the 7th IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics, IEEE, Siem Reap, Cambodia, pp. 181−186, 2015. DOI: 10.1109/ICCIS.2015.7274617.
    [7]
    A. Akbarimajd, M. N. Ahmadabadi. Manipulation by juggling of planar polygonal objects using two 3-DOF manipulators. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, Zurich, Switzerland, 2007. DOI: 10.1109/AIM.2007.4412559.
    [8]
    R. Shah, P. J. Narayanan. Trajectory based video object manipulation. In Proceedings of IEEE International Conference on Multimedia and Expo, IEEE, Barcelona, Spain, 2011. DOI: 10.1109/ICME.2011.6012069.
    [9]
    J. Dai, J. Cheng, M. Song. Cooperative task assignment for heterogeneous multi-UAVs based on differential evolution algorithm. In Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems, IEEE, Shanghai, China, pp. 163−167, 2009. DOI: 10.1109/ICICISYS.2009.5358296.
    [10]
    Y. Yang, C. Wang. Analysis of business English information mining method based on task cooperative learning model. In Proceedings of International Conference on Robots & Intelligent System, IEEE, Haikou, China, pp. 344−348, 2019. DOI: 10.1109/ICRIS.2019.00093.
    [11]
    F. Pan, Z. Zhang, R. Zhang, T. Long. Research of UAVs cooperative tasks assignment model. In Proceedings of the 29th Chinese Control Conference, IEEE, Beijing, China, pp. 1757−1762, 2010.
    [12]
    C. Rodríguez, A. Rojas-de-Silva, R. Suárez. Dual-arm framework for cooperative applications. In Proceedings of the 21st IEEE International Conference on Emerging Technologies and Factory Automation, IEEE, Berlin, Germany, 2016. DOI: 10.1109/ETFA.2016.7733704.
    [13]
    O. Robotics. About ROS, [Online], Available: https://www.ros.org/about-ros/, February 15, 2021.
    [14]
    Y. A. Zhang, Y. L. Mi, M. Zhu, F. L. Lu. Adaptive sliding mode control for two-link flexible manipulators with H/sub/spl infin//tracking performance. In Proceedings of International Conference on Machine Learning and Cybernetics, IEEE, Guangzhou, China, pp. 702−707, 2005. DOI: 10.1109/ICMLC.2005.1527035.
    [15]
    A. A. Awelewa, K. C. Mbanisi, S. O. Majekodunmi, I. A. Odigwe, A. F. Agbetuyi, I. Samuel. Development of a prototype robot manipulator for industrial pick-and-place operations. International Journal of Mechanical &Mechatronics Engineering, vol. 13, no. 5, pp. 20–27, 2013.
    [16]
    K. M. Myint, Z. M. M. Htun, H. M. Tun. Position control method for pick and place robot arm for object sorting system. International Journal of Scientific &Technology Research, vol. 5, no. 6, pp. 57–61, 2016.
    [17]
    M. Homayounzade, A. Khademhosseini. Disturbance observer-based trajectory following control of robot manipulators. International Journal of Control,Automation and Systems, vol. 17, no. 1, pp. 203–211, 2019. DOI: 10.1007/s12555-017-0544-x.
    [18]
    P. Song, M. Yashima, V. Kumar. Dynamic simulation for grasping and whole arm manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, San Francisco, USA, pp. 1082−1087, 2000. DOI: 10.1109/ROBOT.2000.844743.
    [19]
    Y. I. C. Robot. YuMi® Creating an automated future together, [Online], Available: https://pdf.directindustry.com/pdf/abb-robotics/yumi-creating-automated-future-together/30265-714485.html, April 01, 2020.
    [20]
    C. Park, K. Park. Design and kinematics analysis of dual arm robot manipulator for precision assembly. In Proceedings of the 6th IEEE International Conference on Industrial Informatics, IEEE, Daejeon, Korea, pp. 430−435, 2008. DOI: 10.1109/INDIN.2008.4618138.
    [21]
    A. Stroupe, T. Huntsberger, A. Okon, H. Aghazarian, M. Robinson. Behavior-based multi-robot collaboration for autonomous construction tasks. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Edmonton, Canada, pp. 1495−1500, 2005. DOI: 10.1109/IROS.2005.1545269.
    [22]
    J. Lee, P. H. Chang, R. S. Jamisola. Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3786–3796, 2014. DOI: 10.1109/TIE.2013.2266079.
    [23]
    P. Andry, P. Gaussier, S. Moga, J. P. Banquet, J. Nadel. Learning and communication via imitation: An autonomous robot perspective. IEEE Transactions on Systems,Man,and Cybernetics − Part A:Systems and Humans, vol. 31, no. 5, pp. 431–442, 2001. DOI: 10.1109/3468.952717.
    [24]
    K. Manke. Meet Blue, the low-cost, human-friendly robot designed for AI, [Online], Available: https://news.berkeley.edu/2019/04/09/meet-blue-the-low-cost-human-friendly-robot-designed-for-ai/, February 11, 2021.
    [25]
    R. Robotics. Your Guide to the World of Robotics, [Online], Available: https://robots.ieee.org/robots/baxter/, February 11, 2021.
    [26]
    DLR. Rollin′ Justin, [Online], Available: https://robots.ieee.org/robots/justin/, June 18, 2020.
    [27]
    D. I. Park, C. Park, H. Do, T. Choi, J. Kyung. Design and analysis of dual arm robot using dynamic simulation. In Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Jeju, Korea, pp. 681−682, 2013. DOI: 10.1109/URAI.2013.6677452.
    [28]
    C. Park, K. Park. Design and kinematics analysis of dual arm robot manipulator for precision assembly. In Proceedings of the 6th IEEE International Conference on Industrial Informatics, IEEE, Daejeon, Korea, pp. 430−435, 2008. DOI: 10.1109/INDIN.2008.4618138.
    [29]
    D. I. Park, C. Park, H. Do, T. Choi, J. Kyung. Development of dual arm robot platform for automatic assembly. In Proceedings of the 14th International Conference on Control, Automation and Systems, IEEE, Gyeonggi-do, Korea, pp. 319−321, 2014. DOI: 10.1109/ICCAS.2014.6988013.
    [30]
    D. I. Park, H. Kim, C. Park, D. Kim. Design and analysis of the dual arm manipulator for rescue robot. In Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, IEEE, Munich, Germany, pp. 608−612, 2017. DOI: 10.1109/AIM.2017.8014084.
    [31]
    A. Freddi, S. Longhi, A. Monteriù, D. Ortenzi. A kinematic joint fault tolerant control based on relative jacobian method for dual arm manipulation systems. In Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems, IEEE, Barcelona, Spain, pp. 39−44, 2016. DOI: 10.1109/SYSTOL.2016.7739726.
    [32]
    S. Erhart, D. Sieber, S. Hirche. An impedance-based control architecture for multi-robot cooperative dual-arm mobile manipulation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 315−322, 2013. DOI: 10.1109/IROS.2013.6696370.
    [33]
    P. Hebert, N. Hudson, J. Ma, J. W. Burdick. Dual arm estimation for coordinated bimanual manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, pp. 120−125, 2013. DOI: 10.1109/ICRA.2013.6630565.
    [34]
    S. Hayati, K. Tso, T. Lee. Dual arm coordination and control. Robotics and Autonomous Systems, vol. 5, no. 4, pp. 333–344, 1989. DOI: 10.1016/0921-8890(89)90018-3.
    [35]
    H. A. Park, C. S. G. Lee. Dual-arm coordinated-motion task specification and performance evaluation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Daejeon, Korea, pp. 929−936, 2016. DOI: 10.1109/IROS.2016.7759161.
    [36]
    R. G. Bonitz, T. C. Hsia. Calibrating a multi-manipulator robotic system. IEEE Robotics &Automation Magazine, vol. 4, no. 1, pp. 18–22, 1997. DOI: 10.1109/100.580975.
    [37]
    T. Tarn, A. Bejczy, X. Yun. Design of dynamic control of two cooperating robot arms: Closed chain formulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Raleigh, USA, pp. 7−13, 1987. DOI: 10.1109/ROBOT.1987.1088028.
    [38]
    S. J. Tricamo, F. L. Swern. Control of multiple robotic arms engaged in cooperative manipulation and assembly operations. In Proceedings of International Conference on Computer Integrated Manufacturing, IEEE, Troy, USA, pp. 282−287, 1988. DOI: 10.1109/CIM.1988.5420.
    [39]
    A. Yanagita, J. M. Tao, T. L. Chang, H. C. Wong, H. D. McGee, C. K. Tsai, S. K. Cheng, S. E. Nickel, H. Akeel. Robot Multi-Arm Control System, U.S. Patent 7860609, December 2010.
    [40]
    O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal, A. Baader. Force strategies for cooperative tasks in multiple mobile manipulation systems. In Proceedings of the 7th International Symposium on Robotics Research, Springer, London, UK, pp. 333−342, 1996. DOI: 10.1007/978-1-4471-1021-7_37.
    [41]
    Y. Koga, J. L. Latombe. On multi-arm manipulation planning. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, San Diego, USA, pp. 945−952, 1994. DOI: 10.1109/ROBOT.1994.351231.
    [42]
    Y. Cheung, J. S. Chung. Cooperative control of a multi-arm system using semi-autonomous telemanipulation and adaptive impedance. In Proceedings of International Conference on Advanced Robotics, IEEE, Munich, Germany, 2009.
    [43]
    B. Hichri, J. C. Fauroux, L. Adouane, I. Doroftei, Y. Mezouar. Design of cooperative mobile robots for co-manipulation and transportation tasks. Robotics and Computer-Integrated Manufacturing, vol. 57, pp. 412–421, 2019. DOI: 10.1016/j.rcim.2019.01.002.
    [44]
    S. Sirouspour. Robust control design for cooperative teleoperation. In Proceedings of the Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Barcelona, Spain, pp. 1133−1138, 2005. DOI: 10.1109/ROBOT.2005.1570268.
    [45]
    F. Caccavale, L. Villani. Impedance control for multi-arm manipulation. In Proceedings of the 39th IEEE Conference on Decision and Control, IEEE, Sydney, Australia, pp. 3465−3470, 2000. DOI: 10.1109/CDC.2000.912240.
    [46]
    N. Bezzo, B. Griffin, P. Cruz, J. Donahue, R. Fierro, J. Wood. A cooperative heterogeneous mobile wireless mechatronic system. IEEE/ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 20–31, 2014. DOI: 10.1109/TMECH.2012.2218254.
    [47]
    O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal. Coordination and decentralized cooperation of multiple mobile manipulators. Journal of Robotic Systems, vol. 13, no. 11, pp. 755–764, 1996.
    [48]
    N. Shiroma, Y. H. Chiu, Z. Min, I. Kawabuchi, F. Matsuno. Development and control of a high maneuverability wheeled robot with variable-structure functionality. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China, pp. 4000−4005, 2006. DOI: 10.1109/IROS.2006.281839.
    [49]
    J. Gonzalez-Gomez, J. G. Victores, A. Valero-Gomez, M. Abderrahim. Motion control of differential wheeled robots with joint limit constraints. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Karon Beach, Thailand, pp. 596−601, 2011. DOI: 10.1109/ROBIO.2011.6181351.
    [50]
    R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet. Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous systems, vol. 40, no. 2−3, pp. 151–162, 2002. DOI: 10.1016/S0921-8890(02)00240-3.
    [51]
    J. X. Xu, Z. Q. Guo, T. H. Lee. Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot. IEEE Transactions on industrial electronics, vol. 61, no. 7, pp. 3671–3681, 2014. DOI: 10.1109/TIE.2013.2282594.
    [52]
    B. X. Mu, J. C. Chen, Y. Shi, Y. F. Chang. Design and implementation of nonuniform sampling cooperative control on a group of two-wheeled mobile robots. IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5035–5044, 2017. DOI: 10.1109/TIE.2016.2638398.
    [53]
    I. Mas, C. Kitts. Object manipulation using cooperative mobile multi-robot systems. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, 2012.
    [54]
    W. Li. Notion of control-law module and modular framework of cooperative transportation using multiple nonholonomic robotic agents with physical rigid-formation-motion constraints. IEEE Transactions on Cybernetics, vol. 46, no. 5, pp. 1242–1248, 2016. DOI: 10.1109/TCYB.2015.2424257.
    [55]
    W. J. Dong, J. A. Farrell. Cooperative control of multiple nonholonomic mobile agents. IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1434–1448, 2008. DOI: 10.1109/TAC.2008.925852.
    [56]
    K. Nagasaka, Y. Kawanami, S. Shimizu, T. Kito, T. Tsuboi, A. Miyamoto, T. Fukushima, H. Shimomura. Whole-body cooperative force control for a two-armed and two-wheeled mobile robot using generalized inverse dynamics and idealized joint units. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 3377−3383, 2010. DOI: 10.1109/ROBOT.2010.5509474.
    [57]
    SLL, RA. Summit-XL mobile robot, [Online], Available: https://www.robotnik.eu/mobile-robots/summit-xl-hl/, April 01, 2020.
    [58]
    M. Guarnieri, R. Kurazume, H. Masuda, T. Inoh, K. Takita, P. Debenest, R. Hodoshima, E. Fukushima, S. Hirose. HELIOS system: A team of tracked robots for special urban search and rescue operations. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, St. Louis, USA, pp. 2795−2800, 2009. DOI: 10.1109/IROS.2009.5354452.
    [59]
    D. Inoue, M. Konyo, S. Tadokoro. Distributed tactile sensors for tracked robots. In Proceedings of IEEE, IEEE, Daegu, Korea, pp. 1309−1312, 2006. DOI: 10.1109/ICSENS.2007.355870.
    [60]
    Robots for Sale. CUSTOM MLT-JR Tracked Development Robot Platform with Arduino and 6-DOF Arm, [Online], Available: https://www.superdroidrobots.com/shop/item.aspx/, April 01, 2020.
    [61]
    J. T. Feddema, C. Lewis, D. A. Schoenwald. Decentralized control of cooperative robotic vehicles: Theory and application. IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 852–864, 2002. DOI: 10.1109/TRA.2002.803466.
    [62]
    T. J. Liao, K. Socha, M. A. M. De Oca, T. Stuützle, M. Dorigo. Ant colony optimization for mixed-variable optimization problems. IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 503–518, 2013. DOI: 10.1109/TEVC.2013.2281531.
    [63]
    Z. Q. Zhang, K. P. Wang, L. X. Zhu, Y. Wang. A Pareto improved artificial fish swarm algorithm for solving a multi-objective fuzzy disassembly line balancing problem. Expert Systems with Applications, vol. 86, pp. 165–176, 2017. DOI: 10.1016/j.eswa.2017.05.053.
    [64]
    T. H. A. Van Den Broek, N. Van De Wouw, H. Nijmeijer. Formation control of unicycle mobile robots: A virtual structure approach. In Proceedings of the 48h IEEE Conference on Decision and Control Held Jointly with the 28th Chinese Control Conference, IEEE, pp. 8328−8333, 2009. DOI: 10.1109/CDC.2009.5399803.
    [65]
    J. G. Yi, H. P. Wang, J. J. Zhang, D. Z. Song, S. Jayasuriya, J. T. Liu. Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation. IEEE Transactions on Robotics, vol. 25, no. 5, pp. 1087–1097, 2009. DOI: 10.1109/TRO.2009.2026506.
    [66]
    O. Khatib. Mobile manipulation: The robotic assistant. Robotics and Autonomous Systems, vol. 26, no. 2-3, pp. 175–183, 1999. DOI: 10.1016/S0921-8890(98)00067-0.
    [67]
    J. Desai, C. C. Wang, M. Zefran, V. Kumar. Motion planning for multiple mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, USA, pp. 2073−2078, 1996. DOI: 10.1109/ROBOT.1996.506176.
    [68]
    Y. Yamamoto, X. P. Yun: Unified analysis on mobility and manipulability of mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Detroit, USA, pp. 1200−1206, 1999. DOI: 10.1109/ROBOT.1999.772525.
    [69]
    M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, J. Buchli. Efficient kinematic planning for mobile manipulators with non-holonomic constraints using optimal control. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Singapore, pp. 3411−3417, 2017. DOI: 10.1109/ICRA.2017.7989388.
    [70]
    G. Oriolo, C. Mongillo. Motion planning for mobile manipulators along given end-effector paths. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Barcelona, Spain, pp. 2154−2160, 2005. DOI: 10.1109/ROBOT.2005.1570432.
    [71]
    T. G. Sugar, V. Kumar. Control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation, vol. 18, no. 1, pp. 94–103, 2002. DOI: 10.1109/70.988979.
    [72]
    T. Sugar, V. Kumar. Decentralized control of cooperating mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Leuven, Belgium, pp. 2916−2921, 1998. DOI: 10.1109/ROBOT.1998.680672.
    [73]
    K. K. Tan, S. N. Huang, T. H. Lee. Decentralized adaptive controller design of large-scale uncertain robotic systems. Automatica, vol. 45, no. 1, pp. 161–166, 2009. DOI: 10.1016/j.automatica.2008.06.005.
    [74]
    E. Simetti, A. Turetta, G. Casalino. Distributed control and coordination of cooperative mobile manipulator systems. In Proceedings of the Distributed Autonomous Robotic Systems 8, Springer, Berlin, Heidelberg, pp. 315−324, 2009. DOI: 10.1007/978-3-642-00644-9_28.
    [75]
    R. Tinos, M. H. Terra, J. Y. Ishihara. Motion and force control of cooperative robotic manipulators with passive joints. IEEE Transactions on Control Systems Technology, vol. 14, no. 4, pp. 725–734, 2006. DOI: 10.1109/TCST.2006.872505.
    [76]
    G. P. Incremona, G. De Felici, A. Ferrara, E. Bassi. A supervisory sliding mode control approach for cooperative robotic system of systems. IEEE Systems Journal, vol. 9, no. 1, pp. 263–272, 2015. DOI: 10.1109/JSYST.2013.2286509.
    [77]
    R. Rastegari, S. A. A. Moosavian. Multiple impedance control of cooperative manipulators using virtual object grasp. In Proceedings of IEEE Conference on Computer Aided Control System Design, IEEE International Conference on Control Applications, IEEE International Symposium on Intelligent Control, IEEE, Munich, Germany, pp. 2872−2877, 2006. DOI: 10.1109/CACSD-CCA-ISIC.2006.4777094.
    [78]
    D. Heck, D. Kostić, A. Denasi, H. Nijmeijer. Internal and external force-based impedance control for cooperative manipulation. In Proceedings of European Control Conference, IEEE, Zurich, Switzerland, pp. 2299−2304, 2013. DOI: 10.23919/ECC.2013.6669163.
    [79]
    W. Gueaieb, F. Karray, S. Al-Sharhan. A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE/ASME Transactions on Mechatronics, vol. 12, no. 2, pp. 109–125, 2007. DOI: 10.1109/TMECH.2007.892820.
    [80]
    S. Phukan, C. Mahanta. A position synchronization controller for co-ordinated links (COOL) dual robot arm based on integral sliding mode: Design and experimental validation. International Journal of Automation and Computing, vol. 18, pp. 110–123, 2021. DOI: 10.1007/s11633-020-1242-3.
    [81]
    D. Y. Zhao, S. Y. Li, Q. M. Zhu. Adaptive jacobian synchronized tracking control for multiple robotic manipulators. In Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China, pp. 3705−3710, 2011.
    [82]
    M. Itoh, T. Murakami, K. Ohnishi. Decentralized control of cooperative manipulators based on virtual force transmission algorithm. In Proceedings of IEEE International Conference on Control Applications, IEEE, Kohala Coast, USA, pp. 869−874, 1999. DOI: 10.1109/CCA.1999.807853.
    [83]
    F. Caccavale, P. Chiacchio, A. Marino, L. Villani. Six-DOF impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, vol. 13, no. 5, pp. 576–586, 2008. DOI: 10.1109/TMECH.2008.2002816.
    [84]
    W. Gueaieb, F. Karray, S. Al-Sharhan. A robust adaptive fuzzy position/force control scheme for cooperative manipulators. IEEE Transactions on Control Systems Technology, vol. 11, no. 4, pp. 516–528, 2003. DOI: 10.1109/TCST.2003.813378.
    [85]
    Institute of Robotics and Mechatronics. Mechatronics: SpaceJustin, [Online], Available: https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-8749/, May 26, 2020.
    [86]
    KUKA. Mobile platforms from KUKA, [Online], Available: https://www.kuka.com/ro-ro/produse-servicii/mobility/mobile-platforms, June, 01, 2020.
    [87]
    M. A. Kamel, X. Yu, Y. M. Zhang. Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Transactions on Control Systems Technology, vol. 26, no. 2, pp. 756–764, 2018. DOI: 10.1109/TCST.2017.2679066.
    [88]
    M. Defoort, T. Floquet, A. Kokosy, W. Perruquetti. Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3944–3953, 2008. DOI: 10.1109/TIE.2008.2002717.
    [89]
    Z. Y. Wang, D. B. Gu. Cooperative target tracking control of multiple robots. IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3232–3240, 2012. DOI: 10.1109/TIE.2011.2146211.
    [90]
    S. B. Marapane, M. M. Trivedi, N. Lassiter, M. B. Holder. Motion control of cooperative robotic teams through visual observation and fuzzy logic control. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Minneapolis, USA, pp. 1738−1743, 1996. DOI: 10.1109/ROBOT.1996.506963.
    [91]
    T. Hekmatfar, E. Masehian, S. J. Mousavi. Cooperative object transportation by multiple mobile manipulators through a hierarchical planning architecture. In Proceedings of the 2nd RSI/ISM International Conference on Robotics and Mechatronics, IEEE, Tehran, Iran, pp. 503−508, 2014. DOI: 10.1109/ICRoM.2014.6990952.
    [92]
    J. Markdahl, Y. Karayiannidis, X. M. Hu, D. Kragic. Distributed cooperative object attitude manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Saint Paul, USA, pp. 2960−2965, 2012. DOI: 10.1109/ICRA.2012.6224665.
    [93]
    A. Petitti, A. Franchi, D. Di Paola, A. Rizzo. Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Stockholm, Sweden, pp. 441−446, 2016. DOI: 10.1109/ICRA.2016.7487164.
    [94]
    V. H. Andaluz, J. S. Ortiz, M. Pérez, F. Roberti, R. Carelli. Adaptive cooperative control of multi-mobile manipulators. In Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Dallas, USA, pp. 2669−2675, 2014. DOI: 10.1109/IECON.2014.7048883.
    [95]
    Fetch Robotics. Fetch mobile manipulator, [Online], Available: https://www.wevolver.com/wevolver.staff/fetch.mobile.manipulator/master/tree, May 26, 2020.
    [96]
    M. Mashali, L. Wu, R. Alqasemi, R. Dubey. Controlling a non-holonomic mobile manipulator in a constrained floor space. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Brisbane, Australia, pp. 725−731, 2018. DOI: 10.1109/ICRA.2018.8462866.
    [97]
    A. Stubbs, J. G. Longtine, D. Grieselhuber Mills, P. S. Wellman, M. D. Verminski. Mobile Robot Manipulator, U.S. Patent 9688472, June 2017.
    [98]
    C. S. Cho, J. D. Kim, S. G. Lee, S. K. Lee, S. C. Han, B. S. Kim. A study on automated mobile painting robot with permanent magnet wheels for outer plate of ship. In Proceedings of IEEE ISR 2013, IEEE, Seoul, Korea, 2013. DOI: 10.1109/ISR.2013.6695602.
    [99]
    M. J. Oh, S. M. Lee, T. W. Kim, K. Y. Lee, J. Kim. Design of a teaching pendant program for a mobile shipbuilding welding robot using a PDA. Computer-Aided Design, vol. 42, no. 3, pp. 173–182, 2010. DOI: 10.1016/j.cad.2009.09.005.
    [100]
    M. F. M. Campos, G. A. S. Pereira, S. R. C. Vale, A. Q. Bracarense, G. A. Pinheiro, M. P. Oliveira. A mobile manipulator for installation and removal of aircraft warning spheres on aerial power transmission lines. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Washington, USA, pp. 3559−3564, 2002. DOI: 10.1109/ROBOT.2002.1014261.
    [101]
    M. Al-Fetyani, M. Hayajneh, A. Alsharkawi. Design of an executable anfis-based control system to improve the attitude and altitude performances of a quadcopter drone. International Journal of Automation and Computing, vol. 18, no. 1, pp. 124–140, 2021. DOI: 10.1007/s11633-020-1251-2.
    [102]
    R. Fareh, T. Rabie. Tracking trajectory for nonholonomic mobile manipulator using distributed control strategy. In Proceedings of the 10th International Symposium on Mechatronics and its Applications, IEEE, Sharjah, United Arab Emirates, 2015. DOI: 10.1109/ISMA.2015.7373473.
    [103]
    B. Hamner, S. Koterba, J. Shi, R. Simmons, S. Singh. An autonomous mobile manipulator for assembly tasks. Autonomous Robots, vol. 28, no. 1, Article number 131, 2010. DOI: 10.1007/s10514-009-9142-y.
    [104]
    Prodrone Co. PRODRONE unveils the world′s first dual robot arm large-format drone, [Online], Available: https://www.prodrone.com/archives/1420/, March 25, 2020.
    [105]
    GEARWURX: SideArm Robotic Arm Kit, [Online], Available: https://gearwurx.com/product/sidearm/, March 25, 2020.
    [106]
    H. L. Nieuws. Antwerp opens first command center for medical drones, [Online], Available: https://www.flandersinvestmentandtrade.com/invest/en, June 10, 2020.
    [107]
    H. Kim, H. Seo, C. Y. Son, H. Lee, S. Kim, H. J. Kim. Cooperation in the air: A learning-based approach for the efficient motion planning of aerial manipulators. IEEE Robotics &Automation Magazine, vol. 25, no. 4, pp. 76–85, 2018. DOI: 10.1109/MRA.2018.2866766.
    [108]
    F. Caccavale, G. Giglio, G. Muscio, F. Pierri. Cooperative impedance control for multiple UAVs with a robotic arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Hamburg, Germany, pp. 2366−2371, 2015. DOI: 10.1109/IROS.2015.7353697.
    [109]
    Y. Q. Wu, J. Song, J. B. Sun, F. F. Zhu, H. Y. Chen. Aerial grasping based on VR perception and haptic control. In Proceedings of IEEE International Conference on Real-time Computing and Robotics, IEEE, Kandima, Maldives, pp. 556−562, 2018. DOI: 10.1109/RCAR.2018.8621786.
    [110]
    T. Yoshikawa, X. Z. Zheng. Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object. The International Journal of Robotics Research, vol. 12, no. 3, pp. 219–230, 1993. DOI: 10.1177/027836499301200302.
    [111]
    A. Petitti, A. Franchi, D. Di Paola, A. Rizzo. Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Stockholm, Sweden, pp. 441−446, 2016. DOI: 10.1109/ICRA.2016.7487164.
    [112]
    A. E. Jimenez-Cano, G. Heredia, M. Bejar, K. Kondak, A. Ollero. Modelling and control of an aerial manipulator consisting of an autonomous helicopter equipped with a multi-link robotic arm. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering, vol. 230, no. 10, pp. 1860–1870, 2016. DOI: 10.1177/0954410015619442.
    [113]
    G. Giglio, F. Pierri. Selective compliance control for an unmanned aerial vehicle with a robotic arm. In Proceedings of the 22nd Mediterranean Conference on Control and Automation, IEEE, Palermo, Italy, pp. 1190−1195, 2014. DOI: 10.1109/MED.2014.6961537.
    [114]
    L. S. Mello, G. V. Raffo, B. V. Adorno. Robust whole-body control of an unmanned aerial manipulator. In Proceedings of European Control Conference, IEEE, Aalborg, Denmark, pp. 702−707, 2016. DOI: 10.1109/ECC.2016.7810371.
    [115]
    G. Arleo, F. Caccavale, G. Muscio, F. Pierri. Control of quadrotor aerial vehicles equipped with a robotic arm. In Proceedings of the 21st Mediterranean Conference on Control and Automation, IEEE, Platanias, Greece, pp. 1174−1180, 2013. DOI: 10.1109/MED.2013.6608869.
    [116]
    N. Tardella. Earthbound robots today need to take flight, [Online], Available: https://spectrum.ieee.org/automaton/robotics/industrialrobots/earthbound-robots-today-need-to-take-flight, June 09, 2020.
    [117]
    G. Muscio, F. Pierri, M. A. Trujillo, E. Cataldi, G. Antonelli, F. Caccavale, A. Viguria, S. Chiaverini, A. Ollero. Coordinated control of aerial robotic manipulators: Theory and experiments. IEEE Transactions on Control Systems Technology, vol. 26, no. 4, pp. 1406–1413, 2018. DOI: 10.1109/TCST.2017.2716905.
    [118]
    P. Leica, K. Rivera, S. Muela, D. Chávez, G. Andaluz, V. H. Andaluz. Consensus algorithms for bidirectional teleoperation of aerial manipulator robots in an environment with obstacles. In Proceedings of IEEE Fourth Ecuador Technical Chapters Meeting, IEEE, Guayaquil, Ecuador, 2019. DOI: 10.1109/ETCM48019.2019.9014872.
    [119]
    H. Lee, H. Kim, H. J. Kim. Planning and control for collision-free cooperative aerial transportation. IEEE Transactions on Automation Science and Engineering, vol. 15, no. 1, pp. 189–201, 2018. DOI: 10.1109/TASE.2016.2605707.
    [120]
    K. U. Lee, Y. H. Choi. Dynamic surface control based tracking control for a drone equipped with a manipulator. The Transactions of The Korean Institute of Electrical Engineers, vol. 66, no. 7, pp. 1123–1130, 2017. DOI: 10.5370/KIEE.2017.66.7.1123.
    [121]
    O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, L. Eck. Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Transactions on Robotics, vol. 25, no. 3, pp. 743–749, 2009. DOI: 10.1109/TRO.2008.2011419.
    [122]
    H. Lee, C. Y. Son, H. J. Kim. Collision-free path planning for cooperative aerial manipulators under velocity and curvature constraints. IEEE Access, vol. 7, pp. 171153–171162, 2019. DOI: 10.1109/ACCESS.2019.2946273.
    [123]
    J. G. Wang, Y. M. Li. Hybrid impedance control of a 3-DOF robotic arm used for rehabilitation treatment. In Proceedings of IEEE International Conference on Automation Science and Engineering, IEEE, Toronto, Canada, pp. 768−773, 2010. DOI: 10.1109/COASE.2010.5584259.
    [124]
    S. J. Ball, I. E. Brown, S. H. Scott. A planar 3DOF robotic exoskeleton for rehabilitation and assessment. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Lyon, France, pp. 4024−4027, 2007. DOI: 10.1109/IEMBS.2007.4353216.
    [125]
    S. K. Mustafa, G. L. Yang, S. H. Yeo, W. Lin, I. M. Chen. Self-calibration of a biologically inspired 7 DOF cable-driven robotic arm. IEEE/ASME Transactions on Mechatronics, vol. 13, no. 1, pp. 66–75, 2008. DOI: 10.1109/TMECH.2007.915024.
    [126]
    S. Kumra, R. Saxena, S. Mehta. Design and development of 6-DOF robotic arm controlled by man machine interface. In Proceedings of IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Coimbatore, India, 2012. DOI: 10.1109/ICCIC.2012.6510243.
    [127]
    C. Y. Song, S. Lee, K. Kim. RoMAN-MD: 6 DOF humanoid arm for medical applications. In Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, IEEE, Seoul, Korea, pp. 123−123, 2010. DOI: 10.1109/ARSO.2010.5680025.
    [128]
    K. Izumi, K. Watanabe, K. Ichida, Y. Tachibana. The design of fuzzy energy regions optimized by GA for a switching control of multi-link underactuated manipulators. In Proceedings of International Conference on Control, Automation and Systems, IEEE, Seoul, Korea, pp. 24−29, 2007. DOI: 10.1109/ICCAS.2007.4406873.
    [129]
    R. Bhandari, V. Kalaichelvi. Analysis and control techniques for two-link underactuated manipulator. In Proceedings of the 4th IEEE International Conference on Engineering Technologies and Applied Sciences, IEEE, Salmabad, Bahrain, pp. 1−5, 2017. DOI: 10.1109/ICETAS.2017.8277874.
    [130]
    D. Liu, X. Z. Lai, Y. W. Wang, X. B. Wan. Position control of a planar four-link underactuated manipulator. In Proceedings of the 37th Chinese Control Conference, IEEE, Wuhan, China, pp. 929−932, 2018. DOI: 10.23919/ChiCC.2018.8483418.
    [131]
    R. Muthusamy, J. M. Indave, P. K. Muthusamy, E. F. Hasan, Y. Zweiri, V. Kyrki, D. M. Gan. Investigation and design of robotic assistance control system for cooperative manipulation. In Proceedings of the 9th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, IEEE, Suzhou, China, pp. 889−895, 2019. DOI: 10.1109/CYBER46603.2019.9066573.
    [132]
    L. Han, X. L. Cheng, W. F. Xu, G. D. Tan. Reconfigurable wireless control system for a dual-arm cooperative robotic system. In Proceedings of IEEE International Conference on Robotics and Biomimetics, IEEE, Macau, Macao, pp. 202−207, 2017. DOI: 10.1109/ROBIO.2017.8324418.
    [133]
    A. Nugroho, E. M. Yuniarno, M. H. Purnomo. Cooperative multi-agent for the end-effector position of robotic arm based on consensus and PID controller. In Proceedings of IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, IEEE, Tianjin, China, 2019. DOI: 10.1109/CIVEMSA45640.2019.9071621.
    [134]
    S. Ali, A. Moosavian, M. Mostafavi. Multiple impedance control of redundant manipulators. In Proceedings of the 2006 IEEE Conference on Robotics, Automation and Mechatronics, IEEE, Bangkok, Thailand, 2006. DOI: 10.1109/RAMECH.2006.252728.
    [135]
    S. M. Li, R. P. Li. Research on trajectory tracking control of multiple degree of freedom manipulator. In Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation, IEEE, Hefei, pp. 218−222, 2017. DOI: 10.1109/YAC.2017.7967408.
    [136]
    H. Osumi, M. Terasawa, H. Nojiri. Cooperative control of multiple mobile manipulators on uneven ground. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Leuven, Belgium, pp. 3198−3203, 1998. DOI: 10.1109/ROBOT.1998.680917.
    [137]
    Y. H. Liu, S. Arimoto, V. Parra-Vega, K. Kitagaki. Adaptive distributed cooperation controller for multiple manipulators. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, IEEE, Pittsburgh, USA, pp. 489−494, 1995. DOI: 10.1109/IROS.1995.525841.
    [138]
    H. Ghariblu, A. Javanmard. Maximum allowable load of two cooperative manipulators. In Proceedings of the 2nd International Conference on Computer Engineering and Applications, IEEE, Bali, Indonesia, pp. 566−570, 2010. DOI: 10.1109/ICCEA.2010.259.
    [139]
    L. Labakhua, I. Martins, M. Igor. Control of a mobile robot with Swedish wheels. In Proceedings of IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, IEEE, Chennai, India, pp. 267−272, 2017. DOI: 10.1109/ICPCSI.2017.8392225.
    [140]
    H. P. Wang, B. J. Li, J. T. Liu, Y. Yang, Y. Zhang. Dynamic modeling and analysis of wheel skid steered mobile robots with the different angular velocities of four wheels. In Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China, pp. 3919−3924, 2011.
    [141]
    K. H. Seo, J. H. Suh. Path planning of mobile robot in partitioned wireless sensor networks. In Proceedings of the 9th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Daejeon, Korea, pp. 619−622, 2012. DOI: 10.1109/URAI.2012.6463098.
    [142]
    D. Y. Kim, J. H. Kim, D. Kim. Development of an omni-directional mobile base utilizing spherical robots as wheels. In Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Jeju, Korea, pp. 370−371, 2017. DOI: 10.1109/URAI.2017.7992754.
    [143]
    Y. G. Kim, J. H. Kwak, D. H. Hong, J. H. Ahn, S. G. Wee, J. An. Localization strategy based on multi-robot collaboration for indoor service robot applications. In Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, pp. 225−226, 2013. DOI: 10.1109/URAI.2013.6677348.
    [144]
    A. Souliman, A. Joukhadar, H. Alturbeh, J. F. Whidborne. Real time control of multi-agent mobile robots with intelligent collision avoidance system. In Proceedings of Science and Information Conference, IEEE, London, UK, pp. 93−98, 2013.
    [145]
    L. Qingqing, F. Yuhong, J. P. Queralta, T. N. Gia, H. Tenhunen, Z. Zou, T. Westerlund. Edge computing for mobile robots: Multi-robot feature-based lidar odometry with FPGAs. In Proceedings of the 12th International Conference on Mobile Computing and Ubiquitous Network, IEEE, Kathmandu, Nepal, pp. 1−2, 2019. DOI: 10.23919/ICMU48249.2019.9006646.
    [146]
    J. Meng, A. B. Liu, Y. Q. Yang, Z. Wu, Q. Y. Xu. Two-wheeled robot platform based on PID control. In Proceedings of the 5th International Conference on Information Science and Control Engineering, IEEE, Zhengzhou, China, pp. 1011−1014, 2018. DOI: 10.1109/ICISCE.2018.00208.
    [147]
    D. Q. Cui, X. S. Gao, W. Z. Guo, H. Dong. Design and stability analysis of a wheel-track robot. In Proceedings of the 3rd International Conference on Information Science and Control Engineering, IEEE, Beijing, China, pp. 918−922, 2016. DOI: 10.1109/ICISCE.2016.200.
    [148]
    Z. Q. Fan, Q. Qiu, Z. J. Meng. Implementation of a four-wheel drive agricultural mobile robot for crop/soil information collection on the open field. In Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation, IEEE, Hefei, China, pp. 408−412, 2017. DOI: 10.1109/YAC.2017.7967443.
    [149]
    S. Khatoon, D. K. Chaturvedi, N. Hasan, M. Istiyaque. Optimal controller design for two wheel mobile robot. In Proceedings of the 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity, IEEE, Ghaziabad, India, 2018. DOI: 10.1109/CIPECH.2018.8724314.
    [150]
    H. Bin, L. W. Zhen, L. H. Feng. The kinematics model of a two-wheeled self-balancing autonomous mobile robot and its simulation. In Proceedings of the 2nd International Conference on Computer Engineering and Applications, IEEE, Bali, Indonesia, pp. 64−68, 2010. DOI: 10.1109/ICCEA.2010.169.
    [151]
    S. Kim, S. Kwon. Nonlinear control design for a two-wheeled balancing robot. In Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE, Jeju, Korea, pp. 486−487, 2013. DOI: 10.1109/URAI.2013.6677319.
    [152]
    S. Wenxia, C. Wei. Simulation and debugging of LQR control for two-wheeled self-balanced robot. In Proceedings of Chinese Automation Congress, IEEE, Jinan, China, pp. 2391−2395, 2017. DOI: 10.1109/CAC.2017.8243176.
    [153]
    D. Sharipov, Z. Abdullaev, Z. Tazhiev, O. Khafizov. Implementation of a mathematical model of a hexacopter control system. In Proceedings of International Conference on Information Science and Communications Technologies, IEEE, Tashkent, Uzbekistan, pp. 1−5, 2019. DOI: 10.1109/ICISCT47635.2019.9011842.
    [154]
    B. X. Yang, G. X. Du, Q. Quan, K. Y. Cai. The degree of controllability with limited input and an application for hexacopter design. In Proceedings of the 32nd Chinese Control Conference, IEEE, Xi′an, China, pp. 113−118, 2013.
    [155]
    E. Apriaskar, Y. P. Nugraha, B. R. Trilaksono. Simulation of simultaneous localization and mapping using hexacopter and RGBD camera. In Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, IEEE, Jakarta, Indonesia, pp. 48−53, 2017. DOI: 10.1109/ICACOMIT.2017.8253385.
    [156]
    R. Szabo. Terrestrial drone creation from rover, robotic arm and raspberry Pi with sun tracker function. In Proceedings of International Symposium on Electronics and Telecommunications, IEEE, Timisoara, Romania, 2018. DOI: 10.1109/ISETC.2018.8583988.
    [157]
    D. Kim, P. Y. Oh. Lab automation drones for mobile manipulation in high throughput systems. In Proceedings of IEEE International Conference on Consumer Electronics, IEEE, Las Vegas, USA, 2018. DOI: 10.1109/ICCE.2018.8326268.
    [158]
    L. L. Shi, H. Jayakody, J. Katupitiya, X. Jin. Coordinated control of a dual-arm space robot: Novel models and simulations for robotic control methods. IEEE Robotics &Automation Magazine, vol. 25, no. 4, pp. 86–95, 2018. DOI: 10.1109/MRA.2018.2864717.
    [159]
    D. Cabecinhas, R. Naldi, C. Silvestre, R. Cunha, L. Marconi. Robust landing and sliding maneuver hybrid controller for a quadrotor vehicle. IEEE Transactions on Control Systems Technology, vol. 24, no. 2, pp. 400–412, 2016. DOI: 10.1109/TCST.2015.2454445.
    [160]
    Y. F. Teng, B. Hu, Z. W. Liu, J. Huang, Z. H. Guan. Adaptive neural network control for quadrotor unmanned aerial vehicles. In Proceedings of the 11th Asian Control Conference, IEEE, Gold Coast, Australia, pp. 988−992, 2017. DOI: 10.1109/ASCC.2017.8287305.
    [161]
    Q. Yin, B. Xian, Y. Zhang, Y. P. Yu, H. T. Li, W. Zeng. Visual simulation system for quadrotor unmanned aerial vehicles. In Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China, pp. 454−459, 2011.
    [162]
    T. Bartelds, A. Capra, S. Hamaza, S. Stramigioli, M. Fumagalli. Compliant aerial manipulators: Toward a new generation of aerial robotic workers. IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 477–483, 2016. DOI: 10.1109/LRA.2016.2519948.
    [163]
    P. Chermprayong, K. T. Zhang, F. Xiao, M. Kovac. An integrated delta manipulator for aerial repair: A new aerial robotic system. IEEE Robotics &Automation Magazine, vol. 26, no. 1, pp. 54–66, 2019. DOI: 10.1109/MRA.2018.2888911.
    [164]
    K. Turkovic, M. Car, M. Orsag. End-effector force estimation method for an unmanned aerial manipulator. In Proceedings of the Workshop on Research, Education and Development of Unmanned Aerial Systems, IEEE, Cranfield, UK, pp. 96−99, 2019. DOI: 10.1109/REDUAS47371.2019.8999670.
    [165]
    Z. G. Zhou, Y. A. Zhang, D. Zhou. Geometric modeling and control for the full-actuated aerial manipulating system. In Proceedings of the 35th Chinese Control Conference, IEEE, Chengdu, China, pp. 6178−6182, 2016. DOI: 10.1109/ChiCC.2016.7554326.
    [166]
    M. Kamel, K. Alexis, R. Siegwart. Design and modeling of dexterous aerial manipulator. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Daejeon, Korea, pp. 4870−4876, 2016. DOI: 10.1109/IROS.2016.7759715.
    [167]
    A. Suarez, G. Heredia, A. Ollero. Design of an anthropomorphic, compliant, and lightweight dual arm for aerial manipulation. IEEE Access, vol. 6, pp. 29173–29189, 2018. DOI: 10.1109/ACCESS.2018.2833160.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (241) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return