Jun-Feng Zhang, Lai-You Liu, Shi-Zhou Fu, Shuo Li. Event-triggered Control of Positive Switched Systems with Actuator Saturation and Time-delay. International Journal of Automation and Computing, vol. 18, no. 1, pp.141-155, 2021. https://doi.org/10.1007/s11633-020-1245-0
Citation: Jun-Feng Zhang, Lai-You Liu, Shi-Zhou Fu, Shuo Li.

Event-triggered Control of Positive Switched Systems with Actuator Saturation and Time-delay

. International Journal of Automation and Computing, vol. 18, no. 1, pp.141-155, 2021. https://doi.org/10.1007/s11633-020-1245-0

Event-triggered Control of Positive Switched Systems with Actuator Saturation and Time-delay

doi: 10.1007/s11633-020-1245-0
More Information
  • Author Bio:

    Jun-Feng Zhang received the Ph. D. degree in Shanghai Jiao Tong University, China in 2014. From December 2014, he worked in School of Automation, Hangzhou Dianzi University, China. From August 2019 to August 2020, he visited Inria, University of Lille, France. He is a member of IEEE and CAA. He was the co-chair of Program Committee in the 6th International Conference on Positive Systems. He has published more than 50 journal and conference papers in the field of positive systems. His research interests include positive systems, switched systems, and model predictive control. E-mail: jfz5678@126.com (Corresponding author) ORCID iD: 0000-0003-1335-6682

    Lai-You Liu received the B. Sc. degree in Zhengzhou University of Aeronautics, China in 2017. He is a master student in Hangzhou Dianzi University, China. His research interests include positive systems and hybrid systems. E-mail: laiyouliu@126.com ORCID iD: 0000-0002-2001-8801

    Shi-Zhou Fu received the B. Sc. degree in Hangzhou Dianzi University, China in 2010. He received the Ph. D. degree in Hong Kong University, China in 2015. He was appointed as a lecturer at Hangzhou Dianzi University, China in 2016. His research interests include fuzzy control, quantum control and robust control. E-mail: fushizhou@hdu.edu.cn ORCID iD: 0000-0003-3938-1325

    Shuo Li received the Ph. D. degree in control science and engineering from Nanjing University of Science and Technology, China in 2017. She was appointed as a lecturer at Hangzhou Dianzi University, China in 2017. Her research interests include positive systems, switched systems, and fuzzy systems. E-mail: lishuo@hdu.edu.cn ORCID iD: 0000-0003-3804-3068

  • Received Date: 2020-04-11
  • Accepted Date: 2020-07-07
  • Publish Online: 2020-09-30
  • Publish Date: 2021-02-18
  • This paper investigates the event-triggered control of positive switched systems with randomly occurring actuator saturation and time-delay, where the actuator saturation and time-delay obey different Bernoulli distributions. First, an event-triggering condition is constructed based on a 1-norm inequality. Under the presented event-triggering scheme, an interval estimation method is utilized to deal with the error term of the systems. Using a co-positive Lyapunov functional, the event-triggered controller and the cone attraction domain gain matrices are designed via matrix decomposition techniques. The positivity and stability of the resulting closed-loop systems are reached by guaranteeing the positivity of the lower bound of the systems and the stability of the upper bound of the systems, respectively. The proposed approach is developed for interval and polytopic uncertain systems, respectively. Finally, two examples are provided to illustrate the effectiveness of the theoretical findings.

     

  • loading
  • [1]
    L. Farina, S. Rinaldi. Positive Linear Systems: Theory and Applications, New York: John Wiley & Sons, 2000. DOI: 10.1002/9781118033029.
    [2]
    J. Lam, Y. Chen, X. W. Liu, X. D. Zhao, J. F. Zhang. Positive Systems, Cham Switzerland: Springer, 2019. DOI: 10.1007/978-3-030-04327-8.
    [3]
    S. Y. Xiao, X. H. Ge, Q. L. Han, Y. J. Zhang. Distributed resilient estimator design for positive systems under topological attacks. IEEE Transactions on Cybernetics, published online. DOI: 10.1109/TCYB.2020.2981646.
    [4]
    R. Shorten, F. Wirth, D. Leith. A positive systems model of TCP-like congestion control: Asymptotic results. IEEE/ACM Transactions on Networking, vol. 14, no. 3, pp. 616–629, 2006. DOI: 10.1109/TNET.2006.876178.
    [5]
    J. F. Zhang, L. W. Zhang, T. Raïssi. A linear framework on the distributed model predictive control of positive systems. Systems &Control Letters, vol. 138, Article number 104665, 2020. DOI: 10.1016/j.sysconle.2020.104665.
    [6]
    C. C. Sun. Stabilization for a class of discrete-time switched large-scale systems with parameter uncertainties. International Journal of Automation and Computing, vol. 16, no. 4, pp. 543–552, 2019. DOI: 10.1007/s11633-016-0966-6.
    [7]
    H. L. Ren, G. D. Zong, H. R. Karimi. Asynchronous finite-time filtering of networked switched systems and its application: An event-driven method. IEEE Transactions on Circuits and Systems I:Regular Papers, vol. 66, no. 1, pp. 391–402, 2019. DOI: 10.1109/TCSI.2018.2857771.
    [8]
    Q. Zhou, S. Y. Zhao, H. Y. Li, R. Q. Lu, C. W. Wu. Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3611–3620, 2019. DOI: 10.1109/TNNLS.2018.2869375.
    [9]
    B. D. O. Anderson, M. B. Ye. Recent advances in the modelling and analysis of opinion dynamics on influence networks. International Journal of Automation and Computing, vol. 16, no. 2, pp. 129–149, 2019. DOI: 10.1007/s11633-019-1169-8.
    [10]
    X. D. Zhao, L. X. Zhang, P. Shi, M. Liu. Stability of switched positive linear systems with average dwell time switching. Automatica, vol. 48, no. 6, pp. 1132–1137, 2012. DOI: 10.1016/j.automatica.2012.03.008.
    [11]
    X. W. Liu, C. Y. Dang. Stability analysis of positive switched linear systems with delays. IEEE Transactions on Automatic Control, vol. 56, no. 7, pp. 1684–1690, 2011. DOI: 10.1109/TAC.2011.2122710.
    [12]
    E. Fornasini, M. E. Valcher. Linear copositive Lyapunov functions for continuous-time positive switched systems. IEEE Transactions on Automatic Control, vol. 55, no. 8, pp. 1933–1937, 2010. DOI: 10.1109/TAC.2010.2049918.
    [13]
    F. Blanchini, P. Colaneri, M. E. Valcher. Co-positive Lyapunov functions for the stabilization of positive switched systems. IEEE Transactions on Automatic Control, vol. 57, no. 12, pp. 3038–3050, 2012. DOI: 10.1109/TAC.2012.2199169.
    [14]
    O. Mason, R. Shorten. On linear copositive Lyapunov functions and the stability of switched positive linear systems. IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1346–1349, 2007. DOI: 10.1109/TAC.2007.900857.
    [15]
    A. Zappavigna, P. Colaneri, J. C. Geromel, R. Shorten. Dwell time analysis for continuous-time switched linear positive systems. In Proceedings of American Control Conference, IEEE, Baltimore, USA, pp. 6256-6261, 2010. DOI: 10.1109/ACC.2010.5531524.
    [16]
    P. Colaneri, R. H. Middleton, Z. Y. Chen, D. Caporale, F. Blanchini. Convexity of the cost functional in an optimal control problem for a class of positive switched systems. Automatica, vol. 50, no. 4, pp. 1227–1234, 2014. DOI: 10.1016/j.automatica.2014.02.025.
    [17]
    E. Fornasini, M. E. Valcher. Stability and stabilizability of special classes of discrete-time positive switched systems. In Proceedings of American Control Conference, IEEE, San Francisco, USA, pp. 2619–2624, 2011. DOI: 10.1109/ACC.2011.5990765.
    [18]
    R. Dorf, M. Farren, C. Phillips. Adaptive sampling frequency for sampled-data control systems. IRE Transactions on Automatic Control, vol. 7, no. 1, pp. 38–47, 1962. DOI: 10.1109/TAC.1962.1105415.
    [19]
    J. Lunze, D. Lehmann. A state-feedback approach to event-based control. Automatica, vol. 46, no. 1, pp. 211–215, 2010. DOI: 10.1016/j.automatica.2009.10.035.
    [20]
    R. Postoyan, P. Tabuada, D. Nešić, A. Anta. A framework for the event-triggered stabilization of nonlinear systems. IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 982–996, 2015. DOI: 10.1109/TAC.2014.2363603.
    [21]
    L. T. Xing, C. Y. Wen, Z. T. Liu, H. Y. Su, J. P. Cai. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 2071–2076, 2017. DOI: 10.1109/TAC.2016.2594204.
    [22]
    W. P. M. H. Heemels, M. C. F. Donkers, A. R. Teel. Periodic event-triggered control for linear systems. IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 847–861, 2013. DOI: 10.1109/TAC.2012.2220443.
    [23]
    T. F. Li, J. Fu. Event-triggered control of switched linear systems. Journal of the Franklin Institute, vol. 354, no. 15, pp. 6451–6462, 2017. DOI: 10.1016/j.jfranklin.2017.05.018.
    [24]
    Y. W. Qi, Z. Cao, X. L. Li. Decentralized event-triggered H control for switched systems with network communication delay. Journal of the Franklin Institute, vol. 356, no. 3, pp. 1424–1445, 2019. DOI: 10.1016/j.jfranklin.2018.12.008.
    [25]
    Y. Y. Yin, Z. L. Lin, Y. Q. Liu, K. L. Teo. Event-triggered constrained control of positive systems with input saturation. International Journal of Robust and Nonlinear Control, vol. 28, no. 11, pp. 3532–3542, 2018. DOI: 10.1002/rnc.4097.
    [26]
    L. Y. Liu, J. F. Zhang, Y. Shao, X. J. Deng. Event-triggered control of positive switched systems based on linear programming. IET Control Theory &Applications, vol. 14, no. 1, pp. 145–155, 2020. DOI: 10.1049/iet-cta.2019.0606.
    [27]
    H. J. Wang, P. Shi, C. C. Lim, Q. Q. Xue. Event-triggered control for networked Markovian jump systems. International Journal of Robust and Nonlinear Control, vol. 25, no. 17, pp. 3422–3438, 2015. DOI: 10.1002/rnc.3273.
    [28]
    A. Selivanov, E. Fridman. Event-triggered H control: A switching approach. IEEE Transactions on Automatic Control, vol. 61, no. 10, pp. 3221–3226, 2016. DOI: 10.1109/TAC.2015.2508286.
    [29]
    H. Ma, H. Y. Li, R. Q. Lu, T. W. Huang. Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Science China Information Sciences, vol. 63, no. 5, Article number 150212, 2020. DOI: 10.1007/s11432-019-2680-1.
    [30]
    T. S. Hu, Z. L. Lin, B. M. Chen. Analysis and design for discrete-time linear systems subject to actuator saturation. Systems &Control Letters, vol. 45, no. 2, pp. 97–112, 2002. DOI: 10.1016/S0167-6911(01)00168-2.
    [31]
    Z. D. Wang, B. Shen, X. S. Liu. H filtering with randomly occurring sensor saturations and missing measurements. Automatica, vol. 48, no. 3, pp. 556–562, 2012. DOI: 10.1016/j.automatica.2012.01.008.
    [32]
    J. Wang, J. Zhao. Stabilisation of switched positive systems with actuator saturation. IET Control Theory &Applications, vol. 10, no. 6, pp. 717–723, 2016. DOI: 10.1049/iet-cta.2015.0064.
    [33]
    J. F. Zhang, T. Raïssi. Saturation control of switched nonlinear systems. Nonlinear Analysis:Hybrid Systems, vol. 32, pp. 320–336, 2019. DOI: 10.1016/j.nahs.2019.01.005.
    [34]
    G. W. Zhang, P. Yang, J. Wang, J. J. Sun, Y. Zhang. Integrated observer-based fixed-time control with backstepping method for exoskeleton robot. International Journal of Automation and Computing, vol. 17, no. 1, pp. 71–82, 2020. DOI: 10.1007/s11633-019-1201-z.
    [35]
    X. M. Sun, W. Wang, G. P. Liu, J. Zhao. Stability analysis for linear switched systems with time-varying delay. IEEE Transactions on Systems,Man,and Cybernetics – Part B:Cybernetics, vol. 38, no. 2, pp. 528–533, 2008. DOI: 10.1109/TSMCB.2007.912078.
    [36]
    Z. G. Feng, H. Y. Zhang, H. P. Du, Z. Y. Jiang. Admissibilisation of singular interval type-2 Takagi-sugeno fuzzy systems with time delay. IET Control Theory &Applications, vol. 14, no. 8, pp. 1022–1032, 2020. DOI: 10.1049/iet-cta.2019.0791.
    [37]
    D. W. Zhang, Q. L. Han, X. M. Zhang. Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Transactions on Cybernetics, vol. 50, no. 6, pp. 2462–2474, 2020. DOI: 10.1109/TCYB.2019.2924450.
    [38]
    E. Fridman, U. Shaked. An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1931–1937, 2002. DOI: 10.1109/TAC.2002.804462.
    [39]
    D. Yue, E. G. Tian, Z. D. Wang, J. Lam. Stabilization of systems with probabilistic interval input delays and its applications to networked control systems. IEEE Transactions on Systems,Man,and Cybernetics – Part A:Systems and Humans, vol. 39, no. 4, pp. 939–945, 2009. DOI: 10.1109/TSMCA.2009.2019875.
    [40]
    M. Xiang, Z. R. Xiang. Stability, L1-gain and control synthesis for positive switched systems with time-varying delay. Nonlinear Analysis:Hybrid Systems, vol. 9, pp. 9–17, 2013. DOI: 10.1016/j.nahs.2013.01.001.
    [41]
    T. T. Liu, B. W. Wu, L. L. Liu, Y. E. Wang. Asynchronously finite-time control of discrete impulsive switched positive time-delay systems. Journal of the Franklin Institute, vol. 352, no. 10, pp. 4503–4514, 2015. DOI: 10.1016/j.jfranklin.2015.06.015.
    [42]
    J. F. Zhang, X. D. Zhao, F. B. Zhu, Z. Z. Han. L1/1-gain analysis and synthesis of Markovian jump positive systems with time delay. ISA Transactions, vol. 63, pp. 93–102, 2016. DOI: 10.1016/j.isatra.2016.03.015.
    [43]
    W. Elloumi, A. Benzaouia, M. Chaabane. Delay-dependent stabilization conditions of controlled positive continuous-time systems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 653–660, 2014. DOI: 10.1007/s11633-014-0816-3.
    [44]
    J. P. Hespanha, A. S. Morse. Stability of switched systems with average dwell-time. In Proceedings of the 38th IEEE Conference on Decision and Control, IEEE, Phoenix, USA, pp. 2655–2660, 1999. DOI: 10.1109/CDC.1999.831330.
    [45]
    X. M. Zhang, Q. L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue, C. Peng. Networked control systems: A survey of trends and techniques. IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 1–17, 2020. DOI: 10.1109/JAS.2019.1911651.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (196) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return