Brian D. O. Anderson and Mengbin Ye. Recent Advances in the Modelling and Analysis of Opinion Dynamics on Influence Networks. International Journal of Automation and Computing, vol. 16, no. 2, pp. 129-149, 2019. https://doi.org/10.1007/s11633-019-1169-8
Citation: Brian D. O. Anderson and Mengbin Ye. Recent Advances in the Modelling and Analysis of Opinion Dynamics on Influence Networks. International Journal of Automation and Computing, vol. 16, no. 2, pp. 129-149, 2019. https://doi.org/10.1007/s11633-019-1169-8

Recent Advances in the Modelling and Analysis of Opinion Dynamics on Influence Networks

doi: 10.1007/s11633-019-1169-8
More Information
  • Author Bio:

    Brian D. O. Anderson received the B. Sc. degree in pure mathematics in 1962, and B. Eng. degree in electrical engineering in 1964, from the University of Sydney, Australia, and the Ph. D. degree in electrical engineering from Stanford University, USA in 1966. He is an emeritus professor at the Australian National University (having retired as distinguished professor in 2016), distinguished professor at Hangzhou Dianzi University, and distinguished researcher in Data61-CSIRO, Australia. His awards include the IEEE Control Systems Award of 1997, the 2001 IEEE James H Mulligan, Jr Education Medal, and the Bode Prize of the IEEE Control System Society in 1992, as well as several IEEE and other best paper prizes. He is a Fellow of the Australian Academy of Science, the Australian Academy of Technological Sciences and Engineering, the Royal Society, and a foreign member of the US National Academy of Engineering. He holds honorary doctorates from a number of universities, including Université Catholique de Louvain, Belgium, and Eidgenoessiche Technische Hochschule (Swiss Federal Institute of Technology), Zurich. He is a past president of the International Federation of Automatic Control and the Australian Academy of Science. His research interests include distributed control and econometric modelling. E-mail: Brian.Anderson@anu.edu.au (Corresponding author) ORCID iD: 0000-0002-1493-4774

    Mengbin Ye received the B. Eng. degree (with First Class Honours) in mechanical engineering from University of Auckland, New Zealand in 2013, and the Ph. D. degree in engineering at the Australian National University, Australia in 2018. He is currently a postdoctoral researcher with the Faculty of Science and Engineering, University of Groningen, the Netherlands. His research interests include opinion dynamics and social networks, consensus and synchronisation of Euler-Lagrange systems, and localisation using bearing measurements. E-mail: m.ye@rug.nl ORCID iD: 0000-0003-1698-0173

  • Received Date: 2018-10-05
  • Accepted Date: 2018-12-29
  • Publish Online: 2019-02-02
  • Publish Date: 2019-04-01
  • A fundamental aspect of society is the exchange and discussion of opinions between individuals, occurring in situations as varied as company boardrooms, elementary school classrooms and online social media. After a very brief introduction to the established results of the most fundamental opinion dynamics models, which seek to mathematically capture observed social phenomena, a brief discussion follows on several recent themes pursued by the authors building on the fundamental ideas. In the first theme, we study the way an individual′s self-confidence can develop through contributing to discussions on a sequence of topics, reaching a consensus in each case, where the consensus value to some degree reflects the contribution of that individual to the conclusion. During this process, the individuals in the network and the way they interact can change. The second theme introduces a novel discrete-time model of opinion dynamics to study how discrepancies between an individual′s expressed and private opinions can arise due to stubbornness and a pressure to conform to a social norm. It is also shown that a few extremists can create " pluralistic ignorance”, where people believe there is majority support for a position but in fact the position is privately rejected by the majority. Last, we consider a group of individuals discussing a collection of logically related topics. In particular, we identify that for topics whose logical interdependencies take on a cascade structure, disagreement in opinions can occur if individuals have competing and/or heterogeneous views on how the topics are related, i.e., the logical interdependence structure varies between individuals.

     

  • loading
  • [1]
    J. R. P. French Jr. A formal theory of social power. Psychological Review, vol. 63, no. 3, pp. 181–194, 1956. DOI: 10.1037/h0046123.
    [2]
    M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, vol. 69, no. 345, pp. 118–121, 1974. DOI: 10.1080/01621459.1974.10480137.
    [3]
    J. Becker, D. Brackbill, D. Centola. Network dynamics of social influence in the wisdom of crowds. Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 26, pp. E5070–E5076, 2017. DOI: 10.1073/pnas.1615978114.
    [4]
    A. G. Chandrasekhar, H. Larreguy, J. P. Xandri. Testing models of social learning on networks: Evidence from a framed field experiment, Technical Report, Massachusetts Institute of Technology, Cambridge, USA, 2012.
    [5]
    G. Toscani. Kinetic models of opinion formation. Communications in Mathematical Sciences, vol. 4, no. 3, pp. 481–496, 2006. DOI: 10.4310/CMS.2006.v4.n3.a1.
    [6]
    B. Düring, M. T. Wolfram. Opinion dynamics: Inhomogeneous Boltzmann-type equations modelling opinion leadership and political segregation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 471, no. 2182, Article number 20150345, 2015.
    [7]
    G. Albi, L. Pareschi, M. Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic and Related Models, vol. 10, no. 1, pp. 1–32, 2017. DOI: 10.3934/krm.2017001.
    [8]
    G. Toscani, A. Tosin, M. Zanella. Opinion modeling on social media and marketing aspects. Physical Review E, vol. 98, no. 2, Article number 022315, 2018.
    [9]
    B. Chang, T. Xu, Q. Liu, E. H. Chen. Study on information diffusion analysis in social networks and its applications. International Journal of Automation and Computing, vol. 15, no. 4, pp. 377–401, 2018. DOI: 10.1007/s11633-018-1124-0.
    [10]
    R. Hegselmann, U. Krause. Opinion dynamics and bounded confidence models, analysis and simulation. Journal of Artificial Societies and Social Simulation, vol. 5, no. 3, Article number 2, 2002.
    [11]
    V. D. Blondel, J. M. Hendrickx, J. N. Tsitsiklis. On Krause′s multi-agent consensus model with state-dependent connectivity. IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2586–2597, 2009. DOI: 10.1109/TAC.2009.2031211.
    [12]
    J. Lorenz. Continuous opinion dynamics under bounded confidence: A survey. International Journal of Modern Physics C, vol. 18, no. 12, pp. 1819–1838, 2007. DOI: 10.1142/S0129183107011789.
    [13]
    W. Su, G. Chen, Y. G. Hong. Noise leads to quasi-consensus of Hegselmann-Krause opinion dynamics. Automatica, vol. 85, pp. 448–454, 2017. DOI: 10.1016/j.automatica.2017.08.008.
    [14]
    S. R. Etesami, T. Başar. Game-theoretic analysis of the Hegselmann-Krause model for opinion dynamics in finite dimensions. IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1886–1897, 2015. DOI: 10.1109/TAC.2015.2394954.
    [15]
    A. Mirtabatabaei, F. Bullo. Opinion dynamics in heterogeneous networks: Convergence conjectures and theorems. SIAM Journal on Control and Optimization, vol. 50, no. 5, pp. 2763–2785, 2012. DOI: 10.1137/11082751X.
    [16]
    C. Altafini. Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 935–946, 2013. DOI: 10.1109/TAC.2012.2224251.
    [17]
    A. V. Proskurnikov, A. S. Matveev, M. Cao. Opinion dynamics in social networks with hostile camps: Consensus vs. polarization. IEEE Transactions on Automatic Control, vol. 61, no. 6, pp. 1524–1536, 2016. DOI: 10.1109/TAC.2015.2471655.
    [18]
    J. Liu, X. D. Chen, T. Başar, M. A. Belabbas. Exponential convergence of the discrete-time and continuous-time Altafini models. IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6168–6182, 2017. DOI: 10.1109/TAC.2017.2700523.
    [19]
    W. G. Xia, M. Cao, K. H. Johansson. Structural balance and opinion separation in trust-mistrust social networks. IEEE Transactions on Control of Network Systems, vol. 3, no. 1, pp. 46–56, 2016. DOI: 10.1109/TCNS.2015.2437528.
    [20]
    D. Cartwright, F. Harary. Structural balance: A generalization of Heider′s theory. Psychological Review, vol. 63, no. 5, pp. 277–293, 1956. DOI: 10.1037/h0046049.
    [21]
    M. Mäs, A. Flache, J. A. Kitts. Cultural integration and differentiation in groups and organizations. Perspectives on Culture and Agent-based Simulations: Integrating Cultures, V. Dignum, F. Dignum, Eds., Cham, Germany: Springer, pp. 71–90, 2014. DOI: 10.1007/978-3-319-01952-9_5.
    [22]
    G. D. Shi, A. Proutiere, M. Johansson, J. S. Baras, K. H. Johansson. The evolution of beliefs over signed social networks. Operations Research, vol. 64, no. 3, pp. 585–604, 2016. DOI: 10.1287/opre.2015.1448.
    [23]
    P. Duggins. A Psychologically-motivated model of opinion change with applications to American politics. Journal of Artificial Societies and Social Simulation, vol. 20, no. 1, Article number 13, 2017.
    [24]
    P. Dandekar, A. Goel, D. T. Lee. Biased assimilation, homophily, and the dynamics of polarization. Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 15, pp. 5791–5796, 2013. DOI: 10.1073/pnas.1217220110.
    [25]
    V. Amelkin, F. Bullo, A. K. Singh. Polar opinion dynamics in social networks. IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5650–5665, 2017. DOI: 10.1109/TAC.2017.2694341.
    [26]
    N. E. Friedkin, E. C. Johnsen. Social influence and opinions. Journal of Mathematical Sociology, vol. 15, no. 3–4, pp. 193–206, 1990. DOI: 10.1080/0022250X.1990.9990069.
    [27]
    N. E. Friedkin, E. C. Johnsen. Social Influence Network Theory: A Sociological Examination of Small Group Dynamics, New York, USA: Cambridge University Press, 2011.
    [28]
    N. E. Friedkin, P. Jia, F. Bullo. A theory of the evolution of social power: Natural trajectories of interpersonal influence systems along issue sequences. Sociological Science, vol. 3, pp. 444–472, 2016. DOI: 10.15195/v3.a20.
    [29]
    N. E. Friedkin, F. Bullo. How truth wins in opinion dynamics along issue sequences. Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 43, pp. 11380–11385, 2017. DOI: 10.1073/pnas.1710603114.
    [30]
    C. C. Childress, N. E. Friedkin. Cultural reception and production: The social construction of meaning in book clubs. American Sociological Review, vol. 77, no. 1, pp. 45–68, 2012. DOI: 10.1177/0003122411428153.
    [31]
    S. E. Parsegov, A. V. Proskurnikov, R. Tempo, N. E. Friedkin. Novel multidimensional models of opinion dynamics in social networks. IEEE Transactions on Automatic Control, vol. 62, no. 5, pp. 2270–2285, 2017. DOI: 10.1109/TAC.2016.2613905.
    [32]
    N. E. Friedkin, A. V. Proskurnikov, R. Tempo, S. E. Parsegov. Network science on belief system dynamics under logic constraints. Science, vol. 354, no. 6310, pp. 321–326, 2016. DOI: 10.1126/science.aag2624.
    [33]
    A. V. Proskurnikov, R. Tempo. A tutorial on modeling and analysis of dynamic social networks. Part I. Annual Reviews in Control, vol. 43, pp. 65–79, 2017. DOI: 10.1016/j.arcontrol.2017.03.002.
    [34]
    A. V. Proskurnikov, R. Tempo. A tutorial on modeling and analysis of dynamic social networks. Part II. Annual Reviews in Control, vol. 45, pp. 166–190, 2018. DOI: 10.1016/j.arcontrol.2018.03.005.
    [35]
    A. Flache, M. Mäs, T. Feliciani, E. Chattoe-Brown, G. Deffuant, S. Huet, J. Lorenz. Models of social influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation, vol. 20, no. 4, Article number 2, 2017.
    [36]
    P. Jia, A. MirTabatabaei, N. E. Friedkin, F. Bullo. Opinion dynamics and the evolution of social power in influence networks. SIAM Review, vol. 57, no. 3, pp. 367–397, 2015. DOI: 10.1137/130913250.
    [37]
    M. Ye, J. Liu, B. D. O. Anderson, C. B. Yu, T. Başar. On the analysis of the DeGroot-Friedkin model with dynamic relative interaction matrices. IFAC-PapersOnLine, vol. 50, no. 1, pp. 11902–11907, 2017. DOI: 10.1016/j.ifacol.2017.08.1426.
    [38]
    M. Ye, J. Liu, B. D. O. Anderson, C. B. Yu, T. Başar. Evolution of social power in social networks with dynamic topology. IEEE Transactions on Automatic Control, vol. 63, no. 11, pp. 3793–3808, 2019. DOI: 10.1109/TAC.2018.2805261.
    [39]
    B. D. O. Anderson, M. Ye. Nonlinear mapping convergence and application to social networks. In Proceedings of European Control Conference, Limassol, Cyprus, pp. 557–562, 2018.
    [40]
    S. E. Asch. Effects of group pressure upon the modification and distortion of judgments. Groups, Leadership and Men, H. Guetzkow, Ed., Oxford, UK: Carnegie Press, pp. 222–236, 1951.
    [41]
    T. Kuran. Private Truths, Public Lies: The Social Consequences of Preference Falsification, Cambridge, USA: Harvard University Press, 1997.
    [42]
    R. L. Gorden. Interaction between attitude and the definition of the situation in the expression of opinion. American Sociological Review, vol. 17, no. 1, pp. 50–58, 1952. DOI: 10.2307/2088359.
    [43]
    D. A. Prentice, D. T. Miller. Pluralistic ignorance and alcohol use on campus: Some consequences of misperceiving the social norm. Journal of Personality and Social Psychology, vol. 64, no. 2, pp. 243–256, 1993. DOI: 10.1037/0022-3514.64.2.243.
    [44]
    P. E. Converse. The nature of belief systems in mass publics. Ideology and Discontent, D. Apter, Ed., New York, USA: Free Press, pp. 206–261, 1964.
    [45]
    F. Bullo, J. Cortés, S. Martínez, Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms, Princeton, USA: Princeton University Press, 2009.
    [46]
    C. D. Godsil, G. Royle, Algebraic Graph Theory, New York, USA: Springer, 2001.
    [47]
    A. Berman, R. J. Plemmons. Nonnegative matrices. Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, Philadelphia, USA: SIAM, 1979.
    [48]
    E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, A. Scaglione. Binary opinion dynamics with stubborn agents. ACM Transactions on Economics and Computation, vol. 1, no. 4, Article number 19, 2013.
    [49]
    A. Nowak, J. Szamrej, B. Latané. From private attitude to public opinion: A dynamic theory of social impact. Psychological Review, vol. 97, no. 3, pp. 362–376, 1990. DOI: 10.1037/0033-295X.97.3.362.
    [50]
    D. Centola, R. Willer, M. Macy. The Emperor′s dilemma: A computational model of self-enforcing norms. American Journal of Sociology, vol. 110, no. 4, pp. 1009–1040, 2005. DOI: 10.1086/427321.
    [51]
    J. M. Hendrickx, G. D. Shi, K. H. Johansson. Finite-time consensus using stochastic matrices with positive diagonals. IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 1070–1073, 2015. DOI: 10.1109/TAC.2014.2352691.
    [52]
    A. Nedić, J. Liu. On convergence rate of weighted-averaging dynamics for consensus problems. IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 766–781, 2017. DOI: 10.1109/TAC.2016.2572004.
    [53]
    W. Ren, R. W. Beard. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. DOI: 10.1109/TAC.2005.846556.
    [54]
    M. Cao, A. S. Morse, B. D. O. Anderson. Reaching a consensus in a dynamically changing environment: A graphical approach. SIAM Journal on Control and Optimization, vol. 47, no. 2, pp. 575–600, 2008. DOI: 10.1137/060657005.
    [55]
    N. E. Friedkin, E. C. Johnsen. Social influence networks and opinion change. Advances in Group Processes, vol. 16, pp. 1–29, 1999.
    [56]
    R. P. Abelson. Mathematical models of the distribution of attitudes under controversy. Contributions to Mathematical Psychology, N. Fredericksen, H. Gulliksen, Eds., New York, USA: Holt, Rinehart and Winston, pp. 1–160, 1964.
    [57]
    M. Taylor. Towards a mathematical theory of influence and attitude change. Human Relations, vol. 21, no. 2, pp. 121–139, 1968. DOI: 10.1177/001872676802100202.
    [58]
    Z. H. Yang, Y. Song, M. Zheng, W. Y. Hou. Consensus of multi-agent systems under switching agent dynamics and jumping network topologies. International Journal of Automation and Computing, vol. 13, no. 5, pp. 438–446, 2016. DOI: 10.1007/s11633-016-0960-z.
    [59]
    H. J. Savino, F. O. Souza, L. C. A. Pimenta. Consensus on intervals of communication delay. International Journal of Automation and Computing, vol. 15, no. 1, pp. 13–24, 2018. DOI: 10.1007/s11633-017-1095-6.
    [60]
    Z. Xu, J. Liu, T. Başar. On a modified DeGroot-Friedkin model of opinion dynamics. In Proceedings of American Control Conference, IEEE, Chicago, USA, pp. 1047–1052, 2015. DOI: 10.1109/ACC.2015.7170871.
    [61]
    W. G. Xia, J. Liu, K. H. Johansson, T. Başar. Convergence rate of the modified DeGroot-Friedkin model with doubly stochastic relative interaction matrices. In Proceedings of American Control Conference, IEEE, Boston, USA, pp. 1054–1059, 2016. DOI: 10.1109/ACC.2016.7525054.
    [62]
    X. D. Chen, J. Liu, M. A. Belabbas, Z. Xu, T. Başar. Distributed evaluation and convergence of self- appraisals in social networks. IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 291–304, 2017. DOI: 10.1109/TAC.2016.2554280.
    [63]
    G. Chen, X. M. Duan, N. E. Friedkin, F. Bullo. Social power dynamics over switching and stochastic influence networks. IEEE Transactions on Automatic Control, published online. DOI: 10.1109/TAC.2018.2822182.
    [64]
    M. Ye, B. D. O. Anderson. Effects of behaviour in self-appraisal dynamics on social networks. In Proceedings of Effects of behaviour in self-appraisal dynamics on social networks, European Control Conference, Naples, Italy, submitted for publication 2019.
    [65]
    N. E. Friedkin. A formal theory of reflected appraisals in the evolution of power. Administrative Science Quarterly, vol. 56, no. 4, pp. 501–529, 2011. DOI: 10.1177/0001839212441349.
    [66]
    A. Mirtabatabaei, P. Jia, N. E. Friedkin, F. Bullo. On the reflected appraisals dynamics of influence networks with stubborn agents. In Proceedings of American Control Conference, IEEE, Portland, USA, pp. 3978–3983, 2014. DOI: 10.1109/ACC.2014.6859256.
    [67]
    L. Coch, J. R. Jr. French. Overcoming resistance to change. Human Relations, vol. 1, no. 4, pp. 512–532, 1948. DOI: 10.1177/001872674800100408.
    [68]
    F. M. Thrasher. The Gang: A Study of 1, 313 Gangs in Chicago. Chicago, USA: University of Chicago Press, 1963.
    [69]
    K. Abbink, L. Gangadharan, T. Handfield, J. Thrasher. Peer punishment promotes enforcement of bad social norms. Nature Communications, vol. 8, Article number 609, 2017.
    [70]
    N. L. Waters, V. P. Hans. A jury of one: Opinion formation, conformity, and dissent on juries. Journal of Empirical Legal Studies, vol. 6, no. 3, pp. 513–540, 2009. DOI: 10.1111/j.1740-1461.2009.01152.x.
    [71]
    R. Willer, K. Kuwabara, M. W. Macy. The false enforcement of unpopular norms. American Journal of Sociology, vol. 115, no. 2, pp. 451–490, 2009. DOI: 10.1086/599250.
    [72]
    H. J. O′Gorman. Pluralistic ignorance and white estimates of white support for racial segregation. Public Opinion Quarterly, vol. 39, no. 3, pp. 313–330, 1975. DOI: 10.1086/268231.
    [73]
    F. H. Allport. Social Psychology, Boston, USA: Houghton Mifflin Company, 1924.
    [74]
    S. Tanford, S. Penrod. Social influence model: A formal integration of research on majority and minority influence processes. Psychological Bulletin, vol. 95, no. 2, pp. 189–225, 1984. DOI: 10.1037/0033-2909.95.2.189.
    [75]
    G. Stasser, J. H. Davis. Group decision making and social influence: A social interaction sequence model. Psychological Review, vol. 88, no. 6, pp. 523–551, 1981. DOI: 10.1037/0033-295X.88.6.523.
    [76]
    B. Mullen. Operationalizing the effect of the group on the individual: A self-attention perspective. Journal of Experimental Social Psychology, vol. 19, no. 4, pp. 295–322, 1983. DOI: 10.1016/0022-1031(83)90025-2.
    [77]
    R. Bond. Group size and conformity. Group Processes & Intergroup Relations, vol. 8, no. 4, pp. 331–354, 2005. DOI: 10.1177/1368430205056464.
    [78]
    D. A. Prentice, D. T. Miller. Pluralistic ignorance and the perpetuation of social norms by unwitting actors. Advances in Experimental Social Psychology, vol. 28, pp. 161–209, 1996. DOI: 10.1016/S0065-2601(08)60238-5.
    [79]
    M. Ye, Y. Z. Qin, A. Govaert, B. D. O. Anderson, M. Cao. An influence network model to study discrepancies in expressed and private opinions, [Online], Available: https://arxiv.org/abs/1806.11236, 2018.
    [80]
    E. Noelle-Neumann. The Spiral of Silence: Public Opinion-Our Social Skin, Chicago, USA: University of Chicago Press, 1993.
    [81]
    M. Ye, M. H. Trinh, Y. H. Lim, B. D. O. Anderson, H. S. Ahn. Continuous-time opinion dynamics on multiple interdependent topics, [Online], Available: https://arxiv.org/abs/1805.02836, 2018.
    [82]
    T. Kuran. Sparks and prairie fires: A theory of unanticipated political revolution. Public Choice, vol. 61, no. 1, pp. 41–74, 1989. DOI: 10.1007/BF00116762.
    [83]
    J. Goodwin. Why we were surprised (Again) by the Arab spring. Swiss Political Science Review, vol. 17, no. 4, pp. 452–456, 2011. DOI: 10.1111/j.1662-6370.2011.02045.x.
    [84]
    D. G. Taylor. Pluralistic ignorance and the spiral of silence: A formal analysis. Public Opinion Quarterly, vol. 46, no. 3, pp. 311–335, 1982. DOI: 10.1086/268729.
    [85]
    A. N. Awan. Virtual jihadist media: Function, legitimacy and radicalizing efficacy. European Journal of Cultural Studies, vol. 10, no. 3, pp. 389–408, 2007. DOI: 10.1177/1367549407079713.
    [86]
    M. Ye, J. Liu, B. D. O. Anderson. On the effects of heterogeneous logical interdependencies in multi- dimensional opinion dynamics models. In Proceedings of the 57th IEEE Conference on Decision and Control, Miami Beach, USA, pp. 4372–4377, 2018.
    [87]
    M. J. Eppler, J. Mengis. The concept of information overload: A review of literature from organization science, accounting, marketing, MIS, and related disciplines. The Information Society, vol. 20, no. 5, pp. 325–344, 2004. DOI: 10.1080/01972240490507974.
    [88]
    J. R. Fox, B. Park, A. Lang. When available resources become negative resources: The effects of cognitive overload on memory sensitivity and criterion bias. Communication Research, vol. 34, no. 3, pp. 277–296, 2007. DOI: 10.1177/0093650207300429.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2559) PDF downloads(176) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return