Volume 13 Number 1
February 2016
Article Contents
Elias C. Eze, Si-Jing Zhang, En-Jie Liu and Joy C. Eze. Advances in Vehicular Ad-hoc Networks (VANETs): Challenges and Road-map for Future Development. International Journal of Automation and Computing, vol. 13, no. 1, pp. 1-18, 2016. doi: 10.1007/s11633-015-0913-y
Cite as: Elias C. Eze, Si-Jing Zhang, En-Jie Liu and Joy C. Eze. Advances in Vehicular Ad-hoc Networks (VANETs): Challenges and Road-map for Future Development. International Journal of Automation and Computing, vol. 13, no. 1, pp. 1-18, 2016. doi: 10.1007/s11633-015-0913-y

Advances in Vehicular Ad-hoc Networks (VANETs): Challenges and Road-map for Future Development

  • Received: 2015-01-17
Fund Project:

This work was supported by a Grant-in-Aid for Scientific Research from Ebonyi State Government (EBSG) (No. EBSG/SSB/PS/VII/105)

  • Recent advances in wireless communication technologies and auto-mobile industry have triggered a significant research interest in the field of vehicular ad-hoc networks (VANETs) over the past few years. A vehicular network consists of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications supported by wireless access technologies such as IEEE 802.11p. This innovation in wireless communication has been envisaged to improve road safety and motor traffic efficiency in near future through the development of intelligent transportation system (ITS). Hence, governments, auto-mobile industries and academia are heavily partnering through several ongoing research projects to establish standards for VANETs. The typical set of VANET application areas, such as vehicle collision warning and traffic information dissemination have made VANET an interesting field of mobile wireless communication. This paper provides an overview on current research state, challenges, potentials of VANETs as well as the ways forward to achieving the long awaited ITS.
  • [1] F. Bai, H. Krishnan. Reliability analysis of DSRC wireless communication for vehicle safety applications. In Proceedings of Intelligent Transportation Systems Conference, IEEE, Toronto, Canada, pp. 355-362, 2006.
    [2] M. A. Moharrum, A. A. Al-Daraiseh. Toward secure vehicular ad-hoc networks: A survey. IETE Technical Review, vol. 29, no. 1, pp. 80-89, 2012.
    [3] Y. Toor, P. Muhlethaler, A. Laouiti. Vehicle Ad Hoc networks: Applications and related technical issues. IEEE Communications Surveys & Tutorials, vol. 10, no. 3, pp. 74-88, 2008.
    [4] E. C. Eze, S. J. Zhang, E. J. Liu. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proceedings of the 20th International Conference on Automation and Computing, IEEE, Cranfield, UK, pp. 176-181, 2014.
    [5] J. B. Kenney. Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, vol. 99, no. 7, pp. 1162-1182, 2011.
    [6] A. Amditis, E. Bertolazzi, M. Bimpas, F. Biral, P. Bosetti, M. Da Lio, L. Danielsson, A. Gallione, H. Lind, A. Saroldi, A. Sjören. A holistic approach to the integration of safety applications: The INSAFES subproject within the european framework programme 6 integrating project PRe-VENT. IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 3, pp. 554-566, 2010.
    [7] Y. Liu, J. Bi, J. Yang. Research on vehicular ad hoc networks. In Proceedings of Chinese Control and Decision Conference, IEEE, Guilin, China, pp. 4430-4435, 2009.
    [8] A. Takahashi, N. Asanuma. Introduction of Honda ASV-2 (advanced safety vehicle-phase 2). In Proceedings of the IEEE Intelligent Vehicles Symposium, IEEE, Dearborn, USA, pp. 694-701, 2000.
    [9] WirelessWorld Research Forum (WWRF). Technologies for the Wireless Future, Chichester, UK: John Wiley & Sons LTD, 2008.
    [10] F. Kargl, P. Papadimitratos, L. Buttyan, M. Müter, B. Wiedersheim, E. Schoch, T. V. Thong, G. Calandriello, A. Held, A. Kung, J. P. Hubaux. Secure vehicular communications: Implementation, performance, and research challenges. IEEE Communications Magazine, vol. 46, no. 11, pp. 110-118, 2008.
    [11] D. Abusch-Magder, P. Bosch, T. E. Klein, P. A. Polakos, L. G. Samuel, H. Viswanathan. 911-NOW: A network on wheels for emergency response and disaster recovery operations. Bell Labs Technical Journal, vol. 11, no. 4, pp. 113-133, 2007.
    [12] M. Alsabaan, W. Alasmary, A. Albasir, K. Naik. Vehicular networks for a greener environment: A survey. IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1372-1388, 2013.
    [13] S. Zeadally, R. Hunt, Y. S. Chen, A. Irwin, A. Hassan. Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, vol. 50, no. 4, pp. 217-241, 2012.
    [14] J. Jakubiak, Y. Koucheryavy. State of the art and research challenges for VANETs. In Proceedings of the 5th Consumer Communications and Networking Conference, IEEE, Las Vegas, USA, pp. 912-916, 2008.
    [15] H. Hartenstein, K. P. Laberteaux. A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, vol. 46, no. 6, pp. 164-171, 2008.
    [16] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, T. Weil. Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, vol. 13, no. 4, pp. 584-616, 2011.
    [17] M. L. Sichitiu, M. Kihl. Inter-vehicle communication systems: A survey. IEEE Communications Surveys & Tutorials, vol. 10, no. 2, pp. 88-105, 2008.
    [18] European Commission, DG INFSO, INFSO G4/JJ D(2006) 701311 Working Paper on Intelligent Co-operative Systems based on V2V and V2I Communications, 2006.
    [19] Y. Y. Luo, W. Zhang, Y. Q. Hu. A new cluster based routing protocol for VANET. In Proceedings of the 2nd International Conference on Networks Security Wireless Communications and Trusted Computing, IEEE, Wuhan, China, pp. 176-180, 2010.
    [20] N. Maslekar, M. Boussedjra, J. Mouzna, L. Houda. Direction based clustering algorithm for data dissemination in vehicular networks. In Proceedings of Vehicular Networking Conference, IEEE, Tokyo, Japan, 2009.
    [21] F. Yang, Y. L. Tang, L. F. Huang. A novel cooperative MAC for broadcasting in clustering VANETs. In Proceedings of International Conference on Connected Vehicles and Expo, IEEE, Las Vegas, USA, pp. 893-897, 2013.
    [22] B. K. Chaurasia, R. S. Tomar, S. Verma, G. S. Tomar. Suitability of MANET routing protocols for vehicular ad hoc networks. In Proceedings of International Conference on Communication Systems and Network Technologies, IEEE, Rajkot, India, pp. 334-338, 2012.
    [23] M. Fogue, P. Garrido, F. J. Martinez, J. C. Cano, C. T. Calafate, P. Manzoni. Evaluating the impact of a novel message dissemination scheme for vehicular networks using real maps. Transportation Research, Part C: Emerging Technologies, vol. 25, pp. 61-80. 2012.
    [24] J. A. Sanguesa, M. Fogue, P. Garrido, F. J. Martinez, J. C. Cano, C. T. Calafate . Using topology and neighbor information to overcome adverse vehicle density conditions. Transportation Research, Part C: Emerging Technologies, vol. 42, pp. 1-13, 2014.
    [25] J. A. Sanguesa, M. Fogue, P. Garrido, F. J. Martinez, J. C. Cano, C. T. Calafate, P. Manzoni. RTAD: A real-time adaptive dissemination system for VANETs. Computer Communications, vol. 60, pp. 53-70, 2015.
    [26] M. T. Sun, W. C. Feng, T. H. Lai, K. Yamada, H. Okada, K. Fujimura. GPS-based message broadcast for adaptive intervehicle communications. In Proceedings of the 52nd Vehicular Technology Conference, IEEE, Boston, USA, vol. 6, pp. 2685-2692, 2000.
    [27] A. Benslimane. Optimized dissemination of alarm messages in vehicular ad-hoc networks (VANET). In Proceedings of the 7th IEEE International Conference High Speed Networks and Multimedia Communications, Toulouse, France, pp. 655-666, 2004.
    [28] E. Fasolo, R. Furiato, A. Zanella. Smart Broadcast algorithm for inter-vehicular communications. In Proceedings of the Wireless Personal Multimedia Communication, Aalborg, Denmark, 2005.
    [29] M. Torrent-Moreno. Inter-vehicle communications: Assessing information dissemination under safety constraints. In Proceedings of the 4th Annual Conference on Wireless on Demand Network Systems and Services, IEEE, Oberguyrgl, pp. 59-64, 2007.
    [30] T. H. Kim, W. K. Hong, H. C. Kim. An effective multihop broadcast in vehicular ad-hoc network. In Proceedings of the 20th International Conference, Springer, Zurich, Switzerland, pp. 112-125, 2007.
    [31] G. Korkmaz, E. Ekici, F. Özgüner, Ü. Özgüner. Urban multi-hop broadcast protocol for inter-vehicle communication systems. In Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks, ACM,NewYork, USA, pp. 76-85, 2004.
    [32] M. Durresi, A. Durresi, L. Barolli. Emergency broadcast protocol for inter-vehicle communications. In Proceedings of the 11th International Conference on Parallel and Distributed Systems, IEEE, Fukuoka, Japan, pp. 402-406, 2005.
    [33] C. E. Plazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla. How do you quickly choreograph inter-vehicular communications? A fast vehicleto-vehicle multi-hop broadcast algorithm, explained. In Proceedings of the 4th IEEE Consumer Communications and Networking Conference, IEEE, Las Vegas, USA, pp. 960-964, 2007.
    [34] H. Jiang, H. Guo, L. J. Chen. Reliable and efficient alarm message routing in VANET. In Proceedings of the 28th International Conference on Distributed Computing Systems Workshops, IEEE, Beijing, China, pp. 186-191, 2008.
    [35] S. N. Mohammad, M. J. Ashraf, S. Wasiq, S. Iqbal, N. Javaid. Analysis and modeling of network connectivity in routing protocols for MANETs and VANETs. In Proceedings of the 8th International Conference on Broadband and Wireless Computing, Communication and Applications, IEEE, Compiegne, France, pp. 528-533, 2013
    [36] P. Singh. Comparative study between unicast and multicast routing protocols in different data rates using vanet. In Proceedings of International Conference on Issues and Challenges in Intelligent Computing Techniques, IEEE, Ghaziabad, India, pp. 278-284, 2014.
    [37] H. L. Sharma, P. Agrawal, R. V. Kshirsagar. Acute direction route node selection multipath routing for VANET: Design approach. In Proceedings of International Conference on Signal Processing and Integrated Networks, IEEE, Noida, India, pp. 338-343, 2014.
    [38] Z. D. Chen, H. T. Kung, D. Vlah. Ad hoc relay wireless networks over moving vehicles on highways. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, ACM, New York, USA, pp. 247-250, 2001.
    [39] S. S. Manvi, M. S. Kakkasageri, C. V. Mahapurush. Performance analysis of AODV, DSR, and swarm intelligence routing protocols in vehicular ad hoc network environment. In Proceedings of International Conference on Future Computer and Communication, IEEE, Kuala Lumpar, Malaysia, pp. 21-25, 2009.
    [40] J. Haemi, M. Fiore, F. Filali, C. Bonnet, C. Casetti, C. F. Chiasserini. A realistic mobility simulator for vehicular ad hoc networks. EURECOM Technical Report, 2007, [Online], Available: http: // www. eurecom. fr/util/publidownload. en. htm?id= 1811, April 13, 2015.
    [41] O. Abedi, R. Berangi, M. A. Azgomi. Improving route stability and overhead on AODV routing protocol and make it usable for VANET. In Proceedings of the 29th International Conference on Distributed Computing Systems Workshops, IEEE, Montreal, Canada, pp. 464-467, 2009.
    [42] O. Abedi, M. Fathy, J. Taghiloo. Enhancing AODV routing protocol using mobility parameters in VANET. In Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, IEEE, Doha, Qatar, pp. 229-235, 2008.
    [43] V. Naumov, R. Baumann, T. Gross. An evaluation of intervehicle ad hoc networks based on realistic vehicular traces. In Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, ACM, New York, USA, pp. 108-119, 2006.
    [44] H. Wu, R. Fujimoto, R. Guensler, M. Hunter. MDDV: A mobility-centric data dissemination algorithm for vehicular networks. In Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks, ACM,NewYork, USA, pp. 47-56, 2004.
    [45] A. A. Mohammadi, G. S. Raj, R. V. Karthick. ABSTAR: Improves Qos for city environment in VANET. In Proceedings of the 5th International Conference on Advanced Computing, IEEE, Chennai, India, pp. 458-462, 2013.
    [46] J. Zhao, G. H. Cao. VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. In Proceedings of the 25th IEEE International Conference on Computer Communications, IEEE, Barcelona, Spain, 2006.
    [47] K. Tokuda, M. Akiyama, H. Fujii. DOLPHIN for intervehicle communications system. In Proceedings of the IEEE Intelligent Vehicles Symposium, IEEE, Dearborn, USA, pp. 504-509, 2000.
    [48] Y. G. Bi, H. Zhao, X. M. Shen. A directional broadcast protocol for emergency message exchange in inter-vehicle communications. In Proceedings of International Conference on Communications, IEEE, Dresden, Germany, 2009.
    [49] M. Kihl, M. L. Sichitiu, H. P. Joshi. Design and evaluation of two geocast protocols for vehicular ad-hoc networks. Journal of Internet Engineering, vol. 2, no. 1, pp. 127-135, 2008.
    [50] O. K. Tonguz, N.Wisitpongphan, F. Bai. DV-CAST: A distributed vehicular broadcast protocol for vehicular ad hoc networks. IEEE Wireless Communications, vol. 17, no. 2, pp. 47-57, 2010.
    [51] G. Caizzone, P. Giacomazzi, L. Musumeci, G. Verticale. A power control algorithm with high channel availability for vehicular ad hoc networks. In Proceedings of International Conference on Communications, IEEE, Seoul, Korea, vol. 5, pp. 3171-3176, 2005.
    [52] A. Mondal, S. Mitra. Dynamic and distributed channel congestion control strategy in VANET. In Proceedings of International Conference on Advances in Computing, Communications and Informatics, IEEE, New Delhi, India, pp. 1697-1703, 2014.
    [53] C. Chen, Y. J. Li, Q. Q. Pei. Avoiding information congestion in VANETs: A congestion game approach. In Proceedings of International Conference on Computer and Information Technology, IEEE, Xian, China, pp. 105-110, 2014.
    [54] N. Sathianadhan, S. S. Gangadharan, G. Narayanan. A delay-based optimum routing protocol scheme for collision avoidance applications in VANETs. In Proceedings of the 27th Canadian Conference on Electrical and Computer Engineering, IEEE, Toronto, Canada, pp. 1-5, 2014.
    [55] L. Zhang, S. Valaee. Safety context-aware congestion control for vehicular broadcast networks. In Proceedings of the 15th International Workshop on Signal Processing Advances in Wireless Communications, IEEE, Toronto, Canada, pp. 399-403, 2014.
    [56] G. Bansal, B. Cheng, A. Rostami, K. Sjoberg, J. B. Kenney, M. Gruteser. Comparing LIMERIC and DCC approaches for VANET channel congestion control. In Proceedings of the 6th International Symposium on Wireless Vehicular Communications, IEEE, Vancouver, Canada, 2014.
    [57] G. Bansal, J. B. Kenney. Achieving weighted-fairnessin message rate-based congestion control for DSRC systems. In Proceedings of the 5th International Symposium on Wireless Vehicular Communications, IEEE, Dresden, Germany, pp. 1-5, 2013.
    [58] G. Bansal, J. B. Kenney, C. E. Rohrs. LIMERIC: A linear adaptive message rate algorithm for DSRC congestion control. IEEE Transactions on Vehicular Technology, vol. 62, no. 9, pp. 4182-4197, 2013.
    [59] N. Nasiriani, Y. P. Fallah, H. Krishnan. Stability analysis of congestion control schemes in vehicular ad-hoc networks. In Proceedings of Consumer Communications and Networking Conference, IEEE, Las Vegas, USA, pp. 358-363, 2013.
    [60] L. Le, R. Baldessari, P. Salvador, A. Festag, W. H. Zhang. Performance evaluation of beacon congestion control algorithms for VANETs. In Proceedings of Global Telecommunications Conference, IEEE, Houston, USA, 2011.
    [61] R. Reinders, M. van Eenennaam, G. Karagiannis, G. Heijenk. Contention window analysis for beaconing in VANETs. In Proceedings of the 7th International Wireless Communications and Mobile Computing Conference, IEEE, Istanbul, Turkey, pp. 1481-1487, 2011.
    [62] M. Torrent-Moreno, D. Jiang, H. Hartenstein. Broadcast reception rates and effects of priority access in 802.II-based vehicular ad-hoc networks. In Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks, ACM, Philadelphia, USA, pp. 10-18, 2004.
    [63] J. Mittag, H. Hartenstein. Is CSMA able to coordinate multiple access in vehicular radio channels effectively? In Proceedings of the 12th International Conference on ITS Telecommunications, IEEE, Taipei, China, pp. 801-806, 2012.
    [64] M. Torrent-Moreno, J. Mittag, P. Santi, H. Hartenstein. Vehicle-to-vehicle communication: Fair transmit power control for safety-critical information. IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3684-3703, 2009.
    [65] R. K. Schmidt, A. Brakemeier, T. Leinmuller, F. Kargl, G. Schafer. Advanced carrier sensing to resolve local channel congestion. In Proceedings of the 8th ACM International Workshop on Vehicular Inter-Networking, ACM,NewYork, USA, pp. 11-20, 2011.
    [66] R. Stanica, E. Chaput, A. L. Beylot. Physical carrier sense in vehicular ad-hoc networks. In Proceedings of the 8th International Conference on Mobile Adhoc and Sensor Systems, IEEE, Valencia, Spain, pp. 580-589, 2011.
    [67] W. Viriyasitavat, O. K. Tonguz, F. Bai. UV-CAST: An urban vehicular broadcast protocol. IEEE Communications Magazine, vol. 49, no. 11, pp. 116-124, 2011.
    [68] C. Sommer, R. German, F. Dressler. Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 3-15, 2011.
    [69] M. Torrent-Moreno, P. Santi, H. Hartenstein. Distributed fair transmit power adjustment for vehicular ad hoc networks. In Proceedings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, IEEE, Reston, USA, pp. 479-488, 2006.
    [70] SeVeCom. Secure Vehicular Communications: Security Architecture and Mechanisms for V2V/V2I, Delivarable 2.1, 2007-2008.
    [71] NHTSA. Vehicle Safety Communications-Applications (VSC-A) Project, Final Report, DOT HS 811 073, 2009.
    [72] J. F. Kurose, W. K. Ross. Computer Networking: A Top-Down Approach, 5th ed., Boston, USA: Addison Wesley, 2009.
    [73] A. S. Tanenbaum, D. J. Wetherall. Computer Networks, Indianapolis, Indiana: Prentice Hall PTR, 2002.
    [74] Y. D. Xu, E. Altman, R. El-Azouzi, S. E. Elayoubi, M. Haddad. QoE analysis of media streaming in wireless data networks. In Proceedings of the 11th International IFIP TC 6 Networking Conference, Springer, Prague, Czech Republic, pp. 343-354, 2012.
    [75] T. H. Luan, X. M. Shen, F. Bai. Integrity-oriented content transmission in highway vehicular ad hoc networks. In Proceedings of the 32nd Conference on Computer Communications, IEEE, Turin, Italy, pp. 2562-2570, 2013.
    [76] J. Qin, H. Z. Zhu, Y. M. Zhu, L. Lu, G. T. Xue, M. L. Li. POST: Exploiting dynamic sociality for mobile advertising in vehicular networks. In Proceedings of International Conference on Computer Communications, IEEE, Toronto, Canada, pp. 1761-1769, 2014.
    [77] A. Vinel, E. Belyaev, O. Lamotte, M. Gabbouj, Y. Koucheryavy, K. Egiazarian. Video transmission over IEEE 802.11p: Real-world measurements. In Proceedings of International Conference on Communications Workshops, IEEE, Budapest, Hungary, pp. 505-509, 2013.
    [78] E. Belyaev, A. Vinel, A. Surak, M. Gabbouj, M. Jonsson, K. Egiazarian. Robust vehicle-to-infrastructure video transmission for road surveillance applications. IEEE Transactions on Vehicular Technology, vol. 64, no. 7, pp. 2991-3003, 2014.
    [79] K. Ota, M. X. Dong, S. Chang, H. Z. Zhu. MMCD: Cooperative downloading for highway VANETs. IEEE Transactions on Emerging Topics in Computing, vol. 3, no. 1, pp. 34-43, 2015.
    [80] F. Naeimipoor, A. Boukerche. A hybrid video dissemination protocol for VANETs. In Proceedings of International Conference on Communications, IEEE, Sydney, Australia, pp. 112-117, 2014.
    [81] X. X. Jiang, X. Cao, D. H. C. Du. Multihop transmission and retransmission measurement of real-time video streaming over DSRC devices. In Proceedings of the 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks, IEEE, Sydney, Australia, pp. 1-9, 2014.
    [82] H. H. Wu, H. D. Ma. Opportunistic routing for live video streaming in vehicular ad hoc networks. In Proceedings of the 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks, IEEE, Sydney, Australia, pp. 1-3, 2014.
    [83] C. Q. Xu, F. T. Zhao, J. F. Guan, H. K. Zhang, G. M. Muntean. QoE-driven user-centric VoD services in urban multihomed P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, vol. 62, no. 5, pp. 2273-2289, 2013.
    [84] C. Quadros, E. Cerqueira, A. Santos, M. Gerla. A multiflow-driven mechanism to support live video streaming on VANETs. In Proceedings of Brazilian Symposium on Computer Networks and Distributed Systems, IEEE, Florianopolis, Brazil, pp. 468-476, 2014.
    [85] B. Bellalta, E. Belyaev, M. Jonsson, A. Vinel. Performance evaluation of IEEE 802.11p-enabled vehicular video surveillance system. IEEE Communications Letters, vol. 18, no. 4, pp. 708-711, 2014.
    [86] M. Asefi, J. W. Mark, X. M. Shen. A mobility-aware and quality-driven retransmission limit adaptation scheme for video streaming over VANETs. IEEE Transactions on Wireless Communications, vol. 11, no. 5, pp. 1817-1827, 2012.
    [87] E. Belyaev, A. Vinel, M. Jonsson, K. Sjoberg. Live video streaming in IEEE 802.11p vehicular networks: Demonstration of an automotive surveillance application. In Proceedings of IEEE Conference on Computer Communications Workshops, IEEE, Toronto, Canada, pp. 131-132, 2014.
    [88] A. Bradai, T. Ahmed. ReViV: Selective rebroadcast mechanism for video streaming over VANET. In Proceedings of the 79th Vehicular Technology Conference, IEEE, Seoul, Korea, pp. 1-6, 2014.
    [89] C. Rezende, A. Mammeri, A. Boukerche, A. A. F. Loureiro. A receiver-based video dissemination solution for vehicular networks with content transmissions decoupled from relay node selection. Ad Hoc Networks, vol. 17, pp. 1-17, 2014.
    [90] Y. Chen, X. L. Cai, M. Y. Gao, X.Wang, L. N. Zhu, C. L. Li. Dynamic overlay-based scheme for video delivery over VANETs. In Proceedings of the 80th Vehicular Technology Conference, IEEE, Vancouver, Canada, pp. 1-5, 2014.
    [91] IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-channel Operation Corrigendum 1: Miscellaneous Corrections. IEEE Std 1609.4-2010/Cor 1-2014 (Corrigendum to IEEE Std 1609. 4-2010), 2014.
    [92] X. Yu, P. Navaratnam, K. Moessner, H. Cruickshank. Distributed resource reservation in hybrid MAC with admission control for wireless mesh networks. IEEE Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1-13, 2015.
    [93] D. N. M. Dang, H. N. Dang, C. T. Do, C. S. Hong. An enhanced multi-channel MAC for vehicular ad hoc networks. In Proceedings of IEEE Wireless Communications and Networking Conference, Shanghai, China, pp .351-355, 2013.
    [94] J. So, N. H. Vaidya. Multi-channel MAC for ad hoc networks: Handling multi-channel hidden terminals using a single transceiver. In Proceedings of the 5th International Symposium on Mobile Ad Hoc Networking and Computing, ACM, New York, USA, pp. 222-233, 2004.
    [95] E. G. Strom. On medium access and physical layer standards for cooperative intelligent transport systems in Europe. Proceedings of the IEEE, vol. 99, no. 7, pp. 1183-1188, 2011.
    [96] C. Campolo, Y. Koucheryavy, A.Molinaro, A. Vinel. Characterizing broadcast packet losses in IEEE 802.11p/WAVE vehicular networks. In Proceedings of the 22nd International Symposium on Personal Indoor and Mobile Radio Communications, IEEE, Toronto, Canada, pp. 735-739, 2011.
    [97] X. Y. Yin, X. M. Ma, K. S. Trivedi, A. Vinel. Performance and reliability evaluation of BSM broadcasting in DSRC with multi-channel schemes. IEEE Transactions on Computers, vol. 63, no. 12, pp. 3101-3113, 2014.
    [98] J. Kakarla, S. Sathya. A survey and qualitative analysis of multi-channel MAC protocols for VANET. International Journal of Computer Applications, vol. 38, no. 6, pp. 38-42, 2012.
    [99] C. Campolo, A. Molinaro. Improving multi-channel operations in VANETs by leveraging stopped vehicles. In Proceedings of the 24th International Symposium on Personal Indoor and Mobile Radio Communications, IEEE, London, UK, pp. 2229-2233, 2013.
    [100] Y. L. Morgan. Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, vol. 12, no. 4, pp. 504-518, 2010.
    [101] R. Uzcategui, G. Acosta-Marum. Wave: A tutorial. IEEE Communications Magazine, vol. 47, no. 5, pp. 126-133, 2009.
    [102] H. Su, X. Zhang. Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad-hoc networks. IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3309-3323, 2007.
    [103] M. M. Ni, Z. D. Zhong, D. M. Zhao. A novel multichannel multiple access protocol for vehicular ad hoc networks. In Proceedings of International Conference on Communications, IEEE, Ottawa, Canada, pp. 528-532, 2012.
    [104] Y. P. Zang, L. Stibor, B. Walke, H. J. Reumerman, A. Barroso. A novel MAC protocol for throughput sensitive applications in vehicular environments. In Proceedings of the 65th Vehicular Technology Conference, IEEE, Dublin, Ireland, pp. 2580-2584, 2007.
    [105] IEEE Standard for Wireless Access in Vehicular Environments (WAVE)—Multi-channel Operation, Corrigendum 1: Correct identified errors. IEEE P1609.4-2010/Cor1/D4, August 2014, pp. 1-24, 2014.
    [106] T. K. Mak, K. P. Laberteaux, R. Sengupta, M. Ergen. Multichannel medium access control for dedicated short-range communications. IEEE Transactions on Vehicular Technology, vol. 58, no. 1, pp. 349-366, 2009.
  • 加载中
  • [1] Hong-Xuan Ma, Wei Zou, Zheng Zhu, Chi Zhang, Zhao-Bing Kang. Selection of Observation Position and Orientation in Visual Servoing with Eye-in-vehicle Configuration for Manipulator . International Journal of Automation and Computing, 2019, 16(6): 761-774.  doi: 10.1007/s11633-019-1181-z
    [2] A. N. Ouda, Amr Mohamed, Moustafa EI-Gindy, Haoxiang Lang, Jing Ren. Development and Modeling of Remotely Operated Scaled Multi-wheeled Combat Vehicle Using System Identification . International Journal of Automation and Computing, 2019, 16(3): 261-273.  doi: 10.1007/s11633-018-1161-8
    [3] Basant Kumar Sahu, Bidyadhar Subudhi, Madan Mohan Gupta. Stability Analysis of an Underactuated Autonomous Underwater Vehicle Using Extended-Routh's Stability Method . International Journal of Automation and Computing, 2018, 15(3): 299-309.  doi: 10.1007/s11633-016-0992-4
    [4] Tian-Jie Zhang. Unmanned Aerial Vehicle Formation Inspired by Bird Flocking and Foraging Behavior . International Journal of Automation and Computing, 2018, 15(4): 402-416.  doi: 10.1007/s11633-017-1111-x
    [5] Xiao-Long Xu, Nik Bessis, Peter Norrington. Hybrid Collaborative Management Ring on Mobile Multi-agent for Cloud-P2P . International Journal of Automation and Computing, 2016, 13(6): 541-551.  doi: 10.1007/s11633-016-1002-6
    [6] Hamid Dahmani,  Mohammed Chadli,  Abdelhamid Rabhi,  Ahmed El Hajjaji. Detection of Impending Vehicle Rollover with Road Bank Angle Consideration Using a Robust Fuzzy Observer . International Journal of Automation and Computing, 2015, 12(1): 93-101.  doi: 10.1007/s11633-014-0836-z
    [7] Basant Kumar Sahu,  Bidyadhar Subudhi. Adaptive Tracking Control of an Autonomous Underwater Vehicle . International Journal of Automation and Computing, 2014, 11(3): 299-307.  doi: 10.1007/s11633-014-0792-7
    [8] Modeling and Adaptive Sliding Mode Control of the Catastrophic Course of a High-speed Underwater Vehicle . International Journal of Automation and Computing, 2013, 10(3): 210-216.  doi: 10.1007/s11633-013-0714-0
    [9] Vineet Kumar, A. P. Mittal, R. Singh. Stability Analysis of Parallel Fuzzy P + Fuzzy I + Fuzzy D Control Systems . International Journal of Automation and Computing, 2013, 10(2): 91-98.  doi: 10.1007/s11633-013-0701-5
    [10] Chun-Ling Cheng,  Xiao-Long Xu,  Bing-Zhen Gao. METrust: A Mutual Evaluation-based Trust Model for P2P Networks . International Journal of Automation and Computing, 2012, 9(1): 63-71.  doi: 10.1007/s11633-012-0617-5
    [11] Ponnusamy Kumar,  A. Krishnan. Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Erroneous Channel and Capture Effects . International Journal of Automation and Computing, 2011, 8(2): 236-243.  doi: 10.1007/s11633-011-0578-0
    [12] Tong-Tao Li, Ting-Gang Jia, Min-Rui Fei, Huo-Sheng Hu. Time Delay Characteristic of Industrial Wireless Networks Based on IEEE 802.15.4a . International Journal of Automation and Computing, 2011, 8(2): 170-176.  doi: 10.1007/s11633-011-0570-8
    [13] Hai-Ping Du, Nong Zhang. Robust Active Suspension Design Subject to Vehicle Inertial Parameter Variations . International Journal of Automation and Computing, 2010, 7(4): 419-427.  doi: 10.1007/s11633-010-0523-7
    [14] Dhanasekaran Senthilkumar,  A. Krishnan. Throughput Analysis of IEEE 802.11 Multirate WLANs with Collision Aware Rate Adaptation Algorithm . International Journal of Automation and Computing, 2010, 7(4): 571-577.  doi: 10.1007/s11633-010-0542-4
    [15] Dhanasekaran Senthilkumar,  A. Krishnan. Nonsaturation Throughput Enhancement of IEEE 802.11b Distributed Coordination Function for Heterogeneous Traffic under Noisy Environment . International Journal of Automation and Computing, 2010, 7(1): 95-104.  doi: 10.1007/s11633-010-0095-6
    [16] Mei-Sen Pan, Qi Xiong, Jun-Biao Yan. A New Method for Correcting Vehicle License Plate Tilt . International Journal of Automation and Computing, 2009, 6(2): 210-216.  doi: 10.1007/s11633-009-0210-8
    [17] Mei-Sen Pan, Jun-Biao Yan, Zheng-Hong Xiao. Vehicle License Plate Character Segmentation . International Journal of Automation and Computing, 2008, 5(4): 425-432.  doi: 10.1007/s11633-008-0425-0
    [18] Dan Necsulescu, Yi-Wu Jiang, Bumsoo Kim. Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle . International Journal of Automation and Computing, 2007, 4(1): 71-79.  doi: 10.1007/s11633-007-0071-y
    [19] Jiang-Tao Cao, Hong-Hai Liu, Ping Li, David J. Brown, Georgi Dimirovski. A Study of Electric Vehicle Suspension Control System Based on an Improved Half-vehicle Model . International Journal of Automation and Computing, 2007, 4(3): 236-242.  doi: 10.1007/s11633-007-0236-8
    [20] Xian-Ku Zhang,  Yi-Cheng Jin. Transfigured Loop Shaping Controller and its Application to Underwater Vehicle . International Journal of Automation and Computing, 2005, 2(1): 48-51.  doi: 10.1007/s11633-005-0048-7
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5519) PDF downloads (4236) Citations (0)

Advances in Vehicular Ad-hoc Networks (VANETs): Challenges and Road-map for Future Development

Fund Project:

This work was supported by a Grant-in-Aid for Scientific Research from Ebonyi State Government (EBSG) (No. EBSG/SSB/PS/VII/105)

Abstract: Recent advances in wireless communication technologies and auto-mobile industry have triggered a significant research interest in the field of vehicular ad-hoc networks (VANETs) over the past few years. A vehicular network consists of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications supported by wireless access technologies such as IEEE 802.11p. This innovation in wireless communication has been envisaged to improve road safety and motor traffic efficiency in near future through the development of intelligent transportation system (ITS). Hence, governments, auto-mobile industries and academia are heavily partnering through several ongoing research projects to establish standards for VANETs. The typical set of VANET application areas, such as vehicle collision warning and traffic information dissemination have made VANET an interesting field of mobile wireless communication. This paper provides an overview on current research state, challenges, potentials of VANETs as well as the ways forward to achieving the long awaited ITS.

Elias C. Eze, Si-Jing Zhang, En-Jie Liu and Joy C. Eze. Advances in Vehicular Ad-hoc Networks (VANETs): Challenges and Road-map for Future Development. International Journal of Automation and Computing, vol. 13, no. 1, pp. 1-18, 2016. doi: 10.1007/s11633-015-0913-y
Citation: Elias C. Eze, Si-Jing Zhang, En-Jie Liu and Joy C. Eze. Advances in Vehicular Ad-hoc Networks (VANETs): Challenges and Road-map for Future Development. International Journal of Automation and Computing, vol. 13, no. 1, pp. 1-18, 2016. doi: 10.1007/s11633-015-0913-y
Reference (106)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return