Volume 12 Number 4
August 2015
Article Contents
Yuan-Qing Xia, Yu-Long Gao, Li-Ping Yan and Meng-Yin Fu. Recent Progress in Networked Control Systems-A Survey. International Journal of Automation and Computing, vol. 12, no. 4, pp. 343-367, 2015. doi: 10.1007/s11633-015-0894-x
Cite as: Yuan-Qing Xia, Yu-Long Gao, Li-Ping Yan and Meng-Yin Fu. Recent Progress in Networked Control Systems-A Survey. International Journal of Automation and Computing, vol. 12, no. 4, pp. 343-367, 2015. doi: 10.1007/s11633-015-0894-x

Recent Progress in Networked Control Systems-A Survey

  • Received: 2014-10-01
Fund Project:

This work was supported by National Basic Research Program of China (973 Program) (No. 2012CB720000), National Natural Science Foundation of China (Nos. 61225015 and 60974011), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61321002), Beijing Municipal Natural Science Foundation (Nos. 4102053 and 4101001), Beijing Natural Science Foundation (Nos. 4132042) and Beijing Higher Education Young Elite Teacher Project (No.YETP1212).

  • For the past decades, networked control systems (NCSs), as an interdisciplinary subject, have been one of the main research highlights and many fruitful results from different aspects have been achieved. With these growing research trends, it is significant to consolidate the latest knowledge and information to keep up with the research needs. In this paper, the results of different aspects of NCSs, such as quantization, estimation, fault detection and networked predictive control, are summarized. In addition, with the development of cloud technique, cloud control systems are proposed for the further development of NCSs.
  • [1] A. Onat, T. Naskali, E. Parlakay, O. Mutluer. Control over imperfect networks: Model-based predictive networked control systems. IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 905-913, 2011.
    [2] Y. Ge, Q. G. Chen, M. Jiang, Y. Q. Huang. Modeling of random delays in networked control systems. Journal of Control Science and Engineering, vol. 2013, Article number 383415, 2013.
    [3] L. X. Zhang, H. J. Gao, O. Kaynak. Network-induced constraints in networked control systems—A survey. IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 403-416, 2013.
    [4] D. F. Delchamps. Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control, vol. 35, no. 8, pp. 916-924, 1990.
    [5] L. Bao, M. Skoglund, K. H. Johansson. Encoder-decoder design for event-triggered feedback control over bandlimited channels. In Proceedings of the American Control Conference, IEEE, Minneapolis, USA, pp. 4183-4188, 2006.
    [6] S. L. Hu, D. Yue. Event-triggered control design of linear networked systems with quantizations. ISA Transactions, vol. 51, no. 1, pp. 153-162, 2012.
    [7] E. Garcia, P. J. Antsaklis. Model-based event-triggered control for systems with quantization and time-varying network delays. IEEE Transactions on Automatic Control, vol. 58, no. 2, pp. 422-434, 2013.
    [8] L. C. Li, X. F. Wang, M. Lemmon. Stabilizing bit-rates in quantized event triggered control systems. In Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, ACM, Beijing, China, pp. 245-254, 2012.
    [9] N. Elia, S. K. Mitter. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, vol. 46, no. 9, pp. 1384-1400, 2001.
    [10] M. Y. Fu, L. H. Xie. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1698-1711, 2005.
    [11] H. Ishii, T. Başar. Remote control of LTI systems over networks with state quantization. Systems & Control Letters, vol. 54, no. 1, pp. 15-31, 2005.
    [12] T. Hayakawa, H. Ishii, K. Tsumura. Adaptive quantized control for linear uncertain discrete-time systems. Automatica, vol. 45, no. 3, pp. 692-700, 2009.
    [13] T. Hayakawa, H. Ishii, K. Tsumura. Adaptive quantized control for nonlinear uncertain systems. Systems & Control Letters, vol. 58, no. 9, pp. 625-632, 2009.
    [14] K. Y. You, W. Z. Su, M. Y. Fu, L. H. Xie. Attainability of the minimum data rate for stabilization of linear systems via logarithmic quantization. Automatica, vol. 47, no. 1, pp. 170-176, 2011.
    [15] B. Zhou, G. R. Duan, J. Lam. On the absolute stability approach to quantized feedback control. Automatica, vol. 46, no. 2, pp. 337-346, 2010.
    [16] D. Yue, C. Peng, G. Y. Tang. Guaranteed cost control of linear systems over networks with state and input quantisations. IET Control Theory & Applications, vol. 153, no. 6, pp. 658-664, 2006.
    [17] C. Z. Zhang, G. Feng, H. J. Gao, J. B. Qiu. Generalized H2 filter design for T-S fuzzy systems with quantization and packet loss. In Proceedings of IEEE Symposium on Computational Intelligence in Control and Automation, IEEE, Paris, France, pp. 52-59, 2011.
    [18] C. Z. Zhang, G. Feng, H. J. Gao, J. B. Qiu. H filtering for nonlinear discrete-time systems subject to quantization and packet dropouts. IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 353-365, 2011.
    [19] L. Li, Y. Q. Xia, J. Q. Qiu, H. J. Yang. Robust H networked control for discrete-time fuzzy systems with state quantisation. International Journal of Systems Science, vol. 43, no. 12, pp. 2249-2260, 2012.
    [20] J. J. Yan, Y. Q. Xia. Stabilisation of non-linear continuous system with input quantisation and packet dropout. IET Control Theory & Applications, vol. 6, no. 15, pp. 2426-2433, 2012.
    [21] Y. Q. Xia, J. J. Yan, P. Shi, M. Y. Fu. Stability analysis of discrete-time systems with quantized feedback and measurements. IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 313-324, 2013.
    [22] R. W. Brockett, D. Liberzon. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, vol. 45, no. 7, pp. 1279-1289, 2000.
    [23] D. Liberzon. Hybrid feedback stabilization of systems with quantized signals. Automatica, vol. 39, no. 9, pp. 1543-1554, 2003.
    [24] F. Fagnani, S. Zampieri. Quantized stabilization of linear systems: Complexity versus performance. IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1534-1548, 2004.
    [25] F. Bullo, D. Liberzon. Quantized control via locational optimization. IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 2-13, 2006.
    [26] D. Liberzon, D. Nesic. Input-to-state stabilization of linear systems with quantized state measurements. IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 767-781, 2007.
    [27] D. Nešić, D. Liberzon. A unified framework for design and analysis of networked and quantized control systems. IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 732-747, 2009.
    [28] K. Y. You, L. H. Xie. Minimum data rate for mean square stabilization of discrete LTI systems over lossy channels. IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2373-2378, 2010.
    [29] K. Y. You, L. H. Xie. Minimum data rate for mean square stabilizability of linear systems with Markovian packet losses. IEEE Transactions on Automatic Control, vol. 56, no. 4, pp. 772-785, 2011.
    [30] E. Tian, D. Yue, X. Zhao. Quantised control design for networked control systems. IET Control Theory & Applications, vol. 1, no. 6, pp. 1693-1699, 2007.
    [31] C. De Persis. On stabilization of nonlinear systems under data rate constraints using output measurements. International Journal of Robust and Nonlinear Control, vol. 16, no. 6, pp. 315-332, 2006.
    [32] C. De Persis. Robust stabilization of nonlinear systems by quantized and ternary control. Systems & Control Letters, vol. 58, no. 8, pp. 602-608, 2009.
    [33] J. J. Yan, Y. Q. Xia, B. Liu, M. Y. Fu. Stabilisation of quantised linear systems with packet dropout. IET Control Theory & Applications, vol. 5, no. 8, pp. 982-989, 2011.
    [34] J. J. Yan, Y. Q. Xia, L. Li. Stabilization of fuzzy systems with quantization and packet dropout. International Journal of Robust and Nonlinear Control, vol. 24, no. 10, pp. 1563-1583, 2014.
    [35] Y. Q. Xia, J. J. Yan, J. Z. Shang, M. Y. Fu, B. Liu. Stabilization of quantized systems based on Kalman filter. Control Engineering Practice, vol. 20, no. 10, pp. 954-962, 2012.
    [36] Y. Sharon, D. Liberzon. Input to state stabilizing controller for systems with coarse quantization. IEEE Transactions on Automatic Control, vol. 57, no. 4, pp. 830-844, 2012.
    [37] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, vol. 82, no. 1, pp. 35-45, 1960.
    [38] K. Y. You, L. H. Xie. Kalman filtering with scheduled measurements. IEEE Transactions on Signal Processing, vol. 61, no. 6, pp. 1520-1530, 2013.
    [39] M. Sahebsara, T. W. Chen, S. L. Shah. Optimal H2 filtering in networked control systems with multiple packet dropout. IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1508-1513, 2007.
    [40] M. Sahebsara, T. W. Chen, S. L. Shah. Optimal H filtering in networked control systems with multiple packet dropouts. Systems & Control Letters, vol. 57, no. 9, pp. 696-702, 2008.
    [41] W. A. Zhang, L. Yu, H. B. Song. H filtering of networked discrete-time systems with random packet losses. Information Sciences, vol. 179, no. 22, pp. 3944-3955, 2009.
    [42] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, S. S. Sastry. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453-1464, 2004.
    [43] X. He, Z. D. Wang, D. Zhou. Robust H filtering for networked systems with multiple state delays. International Journal of Control, vol. 80, no. 8, pp. 1217-1232, 2007.
    [44] S. L. Hu, D. Yue. Event-based H filtering for networked system with communication delay. Signal Processing, vol. 92, no. 9, pp. 2029-2039, 2012.
    [45] M. Moayedi, Y. K. Foo, Y. C. Soh. Adaptive Kalman filtering in networked systems with random sensor delays, multiple packet dropouts and missing measurements. IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1577-1588, 2010.
    [46] L. Schenato. Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1311-1317, 2008.
    [47] M. Sahebsara, T. Chen, S. L. Shah. Optimal filtering with random sensor delay, multiple packet dropout and uncertain observations. International Journal of Control, vol. 80, no. 2, pp. 292-301, 2007.
    [48] G. L. Wei, Z. D. Wang, X. He, H. S. Shu. Filtering for networked stochastic time-delay systems with sector nonlinearity. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 1, pp. 71-75, 2009.
    [49] Y. Shi, H. Z. Fang. Kalman filter-based identification for systems with randomly missing measurements in a network environment. International Journal of Control, vol. 83, no. 3, pp. 538-551, 2010.
    [50] M. Moayedi, Y. K. Foo, Y. C. Soh. Filtering for networked control systems with single/multiple measurement packets subject to multiple-step measurement delays and multiple packet dropouts. International Journal of Systems Science, vol. 42, no. 3, pp. 335-348, 2011.
    [51] D. Yue, Q. L. Han. Network-based robust H filtering for uncertain linear systems. IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4293-4301, 2006.
    [52] Y. Q. Xia, J. Q. Han. Robust Kalman filtering for systems under norm bounded uncertainties in all system matrices and error covariance constraints. Journal of Systems Science and Complexity, vol. 18, no. 4, pp. 439-445, 2005.
    [53] H. J. Yang, Y. Q. Xia, P. Shi, M. Y. Fu. A novel delta operator Kalman filter design and convergence analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2458-2468, 2011.
    [54] W. Xie, Y. Q. Xia. Data-driven method for Kalman filtering. In Proceedings of the 2nd International Conference on Intelligent Control and Information Processing, IEEE, Harbin, China, pp. 830-835, 2011.
    [55] J. F. Wu, Q. S. Jia, K. H. Johansson, L. Shi. Event-based sensor data scheduling: Trade-off between communication rate and estimation quality. IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 1041-1046, 2013.
    [56] D. E. Quevedo, D. Nešić. Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses. Automatica, vol. 48, no. 8, pp. 1803-1811, 2012.
    [57] R. N. Yang, P. Shi, G. P. Liu. Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts. IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2655-2660, 2011.
    [58] H. L. Dong, Z. D. Wang, H. J. Gao. Robust H filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts. IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 1957-1966, 2010.
    [59] M. Hilairet, F. Auger, E. Berthelot. Speed and rotor flux estimation of induction machines using a two-stage extended Kalman filter. Automatica, vol. 45, no. 8, pp. 1819-1827, 2009.
    [60] H. W. Sorenson. Kalman Filtering: Theory and Application, Piscataway, New Jersey, USA: IEEE, 1985.
    [61] J. J. LaViola. A comparison of unscented and extended Kalman filtering for estimating quaternion motion. In Proceedings of the American Control Conference, IEEE, Colorado, USA, pp. 2435-2440, 2003.
    [62] N. J. Gordon, D. J. Salmond, A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F on Radar and Signal Processing, vol. 140, no. 2, pp. 107-113, 1993.
    [63] S. Guadarrama, A. Ruiz-Mayor. Approximate robotic mapping from sonar data by modeling perceptions with antonyms. Information Sciences, vol. 180, no. 21, pp. 4164-4188, 2010.
    [64] H. P. Liu, F. C. Sun. Efficient visual tracking using particle filter with incremental likelihood calculation. Information Sciences, vol. 195, pp. 141-153, 2012.
    [65] Y. Q. Xia, Z. H. Deng, L. Li, X.M. Geng. A new continuousdiscrete particle filter for continuous-discrete nonlinear systems. Information Sciences, vol. 242, pp. 64-75, 2013.
    [66] S. Kluge, K. Reif, M. Brokate. Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Transactions on Automatic Control, vol. 55, no. 2, pp. 514-518, 2010.
    [67] L. Li, Y. Q. Xia. Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica, vol. 48, no. 5, pp. 978-981, 2012.
    [68] L. Li, Y. Q. Xia. Unscented Kalman filter over unreliable communication networks with Markovian packet dropouts. IEEE Transactions on Automatic Control, vol. 58, no. 12, pp. 3224-3230, 2013.
    [69] R. A. Singer, A. J. Kanyuck. Computer control of multiple site track correlation. Automatica, vol. 7, no. 4, pp. 455-463, 1971.
    [70] D. Willner, C. B. Chang, K. P. Dunn. Kalman filteri-sensor system. In Proceedings of IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, IEEE, Clearwater, USA, pp. 570-574, 1976.
    [71] K. Salahshoor, M. Mosallaei, M. Bayat. Centralized and decentralized process and sensor fault monitoring using data fusion based on adaptive extended Kalman filter algorithm. Measurement, vol. 41, no. 10, pp. 1059-1076, 2008.
    [72] M. Munz, M. Mählisch, K. Dietmayer. Generic centralized multi sensor data fusion based on probabilistic sensor and environment models for driver assistance systems. IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 1, pp. 6-17, 2010.
    [73] A. Polychronopoulos, U. Scheunert, F. Tango. Centralized data fusion for obstacle and road borders tracking in a collision warning system. In Proceedings of the 7th International Conference on Information Fusion, 2004.
    [74] G. J. Bierman, M. R. Belzer. A decentralized square root information filter/smoother. In Proceedings of the 24th IEEE Conference on Decision and Control, IEEE, Fort Lauderdale, USA, pp. 1902-1905, 1985.
    [75] N. A. Carlson. Federated square root filter for decentralized parallel processors. IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 517-525, 1990.
    [76] D. A. Castanon, D. Teneketzis. Distributed estimation algorithms for nonlinear systems. IEEE Transactions on Automatic Control, vol. 30, no. 5, pp. 418-425, 1985.
    [77] R. Lobbia, M. Kent. Data fusion of decentralized local tracker outputs. IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 3, pp. 787-799, 1994.
    [78] Y. Bar-Shalom. On the track-to-track correlation problem. IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 571-572, 1981.
    [79] S. Grime, H. F. Durrant-Whyte, P. Ho. Communication in decentralized data-fusion systems. In Proceedings of the American Control Conference, IEEE, Chicago, USA, pp. 3299-3303, 1992.
    [80] R. Kumar, M. Wolenetz, B. Agarwalla, J. S. Shin, P. W. Hutto, A. Paul, U. Ramachandran. DFuse: A framework for distributed data fusion. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, ACM, New York, USA, pp. 114-125, 2003.
    [81] M. S. Mahmoud, Y. Q. Xia. Networked Filtering and Fusion in Wireless Sensor Networks, New York: CRC Press, 2014.
    [82] S. Challa, M. Palaniswami, A. Shilton. Distributed data fusion using support vector machines. In Proceedings of the 5th International Conference on Information Fusion, IEEE, Annapolis, USA, pp. 881-885, 2002.
    [83] C. S. Regazzoni, A. Tesei. Distributed data fusion for realtime crowding estimation. Signal Processing, vol. 53, no. 1, pp. 47-63, 1996.
    [84] M. E. Liggins, C. Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, S. Thomopoulos. Distributed fusion architectures and algorithms for target tracking. Proceedings of the IEEE, vol. 85, no. 1, pp. 95-107, 1997.
    [85] E. Besada-Portas, J. A. Lopez-Orozco, J. Besada, J. M. De la Cruz. Multisensor fusion for linear control systems with asynchronous, out-of-sequence and erroneous data. Automatica, vol. 47, no. 7, pp. 1399-1408, 2011.
    [86] X. J. Shen, E. B. Song, Y. M. Zhu, Y. T. Luo. Globally optimal distributed Kalman fusion with local out-of-sequencemeasurement updates. IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1928-1934, 2009.
    [87] B. Chen, W. A. Zhang, L. Yu. Distributed fusion estimation with missing measurements, random transmission delays and packet dropouts. IEEE Transactions on Automatic Control, vol. 59, no. 7, pp. 1961-1967, 2014.
    [88] Y. Q. Xia, J. Z. Shang, J. Chen, G. P. Liu. Data fusion over network. In Proceedings of the 27th Chinese Control Conference, IEEE, Kunming, China, pp. 452-456, 2008.
    [89] Y. Q. Xia, J. Z. Shang, J. Chen, G. P. Liu. Networked data fusion with packet losses and variable delays. IEEE Transactions on Systems, Man, and Cybernetics -Part B: Cybernetics, vol. 39, no. 5, pp. 1107-1120, 2009.
    [90] C. Zhu, Y. Q. Xia, L. P. Yan, M. Y. Fu. Multi-channel networked data fusion with intermittent observations. In Proceedings of the 29th Chinese Control Conference, IEEE, Beijing, China, pp. 4317-4322, 2010.
    [91] C. Zhu, Y. Q. Xia, L. P. Yan, M. Y. Fu. Centralised fusion over unreliable networks. International Journal of Control, vol. 85, no. 4, pp. 409-418, 2012.
    [92] W. A. Zhang, G. Feng, L. Yu. Multi-rate distributed fusion estimation for sensor networks with packet losses. Automatica, vol. 48, no. 9, pp. 2016-2028, 2012.
    [93] Y. Liang, T. W. Chen, Q. Pan. Multi-rate stochastic H filtering for networked multi-sensor fusion. Automatica, vol. 46, no. 2, pp. 437-444, 2010.
    [94] L. P. Yan, B. Xiao, Y. Q. Xia, M. Y. Fu. State estimation for asynchronous multirate multisensor nonlinear dynamic systems with missing measurements. International Journal of Adaptive Control and Signal Processing, vol. 26, no. 6, pp. 516-529, 2012.
    [95] M. Renzo, L. Imbriglio, F. Graziosi, F. Santucci. Distributed data fusion over correlated log-normal sensing and reporting channels: Application to cognitive radio networks. IEEE Transactions on Wireless Communications, vol. 8, no. 12, pp. 5813-5821, 2009.
    [96] L. P. Yan, X. R. Li, Y. Q. Xia, M. Y. Fu. Optimal sequential and distributed fusion for state estimation in crosscorrelated noise. Automatica, vol. 49, no. 12, pp. 3607-3612, 2013.
    [97] X. L. Bian, Y. Q. Xia, Z. H. Deng, M. Y. Fu. Onechannel networked data fusion with communication constraint. Journal of the Franklin Institute, vol. 351, no. 1, pp. 156-173, 2014.
    [98] X. L. Bian, Y. Q. Xia. Energy efficient data fusion over wireless channels with power control. IET Signal Processing, vol. 9, no. 3, pp. 206-217, 2015.
    [99] H. Ye, S. X. Ding. Fault detection of networked control systems with network-induced delay. In Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision, IEEE, Kunming, China, pp. 294-297, 2004.
    [100] W. Zhang, M. S. Branicky, S. M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84-99, 2001.
  • 加载中
  • [1] Azzedine Yahiaoui. A Practical Approach to Representation of Real-time Building Control Applications in Simulation . International Journal of Automation and Computing, 2020, 17(3): 464-478.  doi: 10.1007/s11633-018-1131-1
    [2] Fernando Agustín Pazos, Anibal Zanini, Amit Bhaya. Performance Improvement of Discrete-time Linear Control Systems Subject to Varying Sampling Rates Using the Tikhonov Regularization Method . International Journal of Automation and Computing, 2020, 17(3): 453-463.  doi: 10.1007/s11633-019-1205-8
    [3] Taouba Rhouma, Karim Chabir, Mohamed Naceur Abdelkrim. Resilient Control for Networked Control Systems Subject to Cyber/Physical Attacks . International Journal of Automation and Computing, 2018, 15(3): 345-354.  doi: 10.1007/s11633-017-1059-x
    [4] Ana Paula Batista, Fábio Gonçalves Jota. Analysis of the Most Likely Regions of Stability of an NCS and Design of the Corresponding Event-driven Controller . International Journal of Automation and Computing, 2018, 15(1): 39-51.  doi: 10.1007/s11633-017-1099-2
    [5] Derradji Nada, Mounir Bousbia-Salah, Maamar Bettayeb. Multi-sensor Data Fusion for Wheelchair Position Estimation with Unscented Kalman Filter . International Journal of Automation and Computing, 2018, 15(2): 207-217.  doi: 10.1007/s11633-017-1065-z
    [6] Yuan Ge, Yaoyiran Li. SCHMM-based Compensation for the Random Delays in Networked Control Systems . International Journal of Automation and Computing, 2016, 13(6): 643-652.  doi: 10.1007/s11633-016-1001-7
    [7] Yu-Yan Zhang,  Jun-Ling Zhang,  Xiao-Yuan Luo,  Xin-Ping Guan. Sensor/Actuator Faults Detection for Networked Control Systems via Predictive Control . International Journal of Automation and Computing, 2013, 10(3): 173-180.  doi: 10.1007/s11633-013-0710-4
    [8] Zhen-Chun Wang, Yin-Tang Wen, Xiao-Yuan Luo. Quantized H Fault-tolerant Control for Networked Control Systems . International Journal of Automation and Computing, 2012, 9(4): 352-357.  doi: 10.1007/s11633-012-0655-z
    [9] Xiu-Lan Wang, Chun-Guo Fei, Zheng-Zhi Han. Adaptive Predictive Functional Control for Networked Control Systems with Random Delays . International Journal of Automation and Computing, 2011, 8(1): 62-68.  doi: 10.1007/s11633-010-0555-z
    [10] Ming-Yue Zhao, He-Ping Liu, Zhi-Jun Li, De-Hui Sun. Fault Tolerant Control for Networked Control Systems with Packet Loss and Time Delay . International Journal of Automation and Computing, 2011, 8(2): 244-253.  doi: 10.1007/s11633-011-0579-z
    [11] Zhong-Liang Pan, Ling Chen, Guang-Zhao Zhang. Cultural Algorithm for Minimization of Binary Decision Diagram and Its Application in Crosstalk Fault Detection . International Journal of Automation and Computing, 2010, 7(1): 70-77.  doi: 10.1007/s11633-010-0070-2
    [12] Jun Ren,  Chun-Wen Li,  De-Zong Zhao. Linearizing Control of Induction Motor Based on Networked Control Systems . International Journal of Automation and Computing, 2009, 6(2): 192-197.  doi: 10.1007/s11633-009-0192-6
    [13] Bao-Feng Wang,  Ge Guo. Kalman Filtering with Partial Markovian Packet Losses . International Journal of Automation and Computing, 2009, 6(4): 395-400.  doi: 10.1007/s11633-009-0395-x
    [14] Xian-Ming Tang,  Jin-Shou Yu. Feedback Scheduling of Model-based Networked Control Systems with Flexible Workload . International Journal of Automation and Computing, 2008, 5(4): 389-394.  doi: 10.1007/s11633-008-0389-0
    [15] W. U. Ahamed,  C. Kambhampati. Stable Quantum Filters with Scattering Phenomena . International Journal of Automation and Computing, 2008, 5(2): 132-137.  doi: 10.1007/s11633-008-0132-x
    [16] Bibhrajit Halder,  Nilanjan Sarkar. Robust Nonlinear Analytic Redundancy for Fault Detection and Isolation in Mobile Robot . International Journal of Automation and Computing, 2007, 4(2): 177-182.  doi: 10.1007/s11633-007-0177-2
    [17] Sing Kiong Nguang, Ping Zhang, Steven X. Ding. Parity Relation Based Fault Estimation for Nonlinear Systems: An LMI Approach . International Journal of Automation and Computing, 2007, 4(2): 164-168.  doi: 10.1007/s11633-007-0164-7
    [18] Ping Zhang,  Steven X. Ding. A Model-free Approach to Fault Detection of Continuous-time Systems Based on Time Domain Data . International Journal of Automation and Computing, 2007, 4(2): 189-194.  doi: 10.1007/s11633-007-0189-y
    [19] Min-Ze Chen,  Qi Zhao,  Dong-Hua Zhou. A Robust Fault Detection Approach for Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(1): 23-28.  doi: 10.1007/s11633-006-0023-y
    [20] Shumei Mu, Tianguang Chu, Long Wang, Wensheng Yu. Output Feedback Control of Networked Systems . International Journal of Automation and Computing, 2004, 1(1): 26-34.  doi: 10.1007/s11633-004-0026-5
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (6271) PDF downloads (3784) Citations (0)

Recent Progress in Networked Control Systems-A Survey

Fund Project:

This work was supported by National Basic Research Program of China (973 Program) (No. 2012CB720000), National Natural Science Foundation of China (Nos. 61225015 and 60974011), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61321002), Beijing Municipal Natural Science Foundation (Nos. 4102053 and 4101001), Beijing Natural Science Foundation (Nos. 4132042) and Beijing Higher Education Young Elite Teacher Project (No.YETP1212).

Abstract: For the past decades, networked control systems (NCSs), as an interdisciplinary subject, have been one of the main research highlights and many fruitful results from different aspects have been achieved. With these growing research trends, it is significant to consolidate the latest knowledge and information to keep up with the research needs. In this paper, the results of different aspects of NCSs, such as quantization, estimation, fault detection and networked predictive control, are summarized. In addition, with the development of cloud technique, cloud control systems are proposed for the further development of NCSs.

Yuan-Qing Xia, Yu-Long Gao, Li-Ping Yan and Meng-Yin Fu. Recent Progress in Networked Control Systems-A Survey. International Journal of Automation and Computing, vol. 12, no. 4, pp. 343-367, 2015. doi: 10.1007/s11633-015-0894-x
Citation: Yuan-Qing Xia, Yu-Long Gao, Li-Ping Yan and Meng-Yin Fu. Recent Progress in Networked Control Systems-A Survey. International Journal of Automation and Computing, vol. 12, no. 4, pp. 343-367, 2015. doi: 10.1007/s11633-015-0894-x
Reference (100)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return