Volume 12 Number 3
June 2015
Article Contents
Wei Zhou, Miao Yu and De-Qing Huang. A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems. International Journal of Automation and Computing, vol. 12, no. 3, pp. 330-336, 2015. doi: 10.1007/s11633-015-0886-x
Cite as: Wei Zhou, Miao Yu and De-Qing Huang. A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems. International Journal of Automation and Computing, vol. 12, no. 3, pp. 330-336, 2015. doi: 10.1007/s11633-015-0886-x

A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems

  • Received: 2014-04-27
Fund Project:

This work was supported by National Basic Research Program of China (973 Program)(No. 2012CB316400) and National Natural Science Foundation of China (Nos. 61171034 and 61273134).

  • In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model (HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors (PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.
  • [1] M. Uchiyama. Formation of high speed motion pattern of mechanical arm by trial. Transactions of the Society of Instrumentation and Control Engineers, vol. 14, no. 6, pp. 706-712, 1978. (in Japanese)
    [2] S. Arimoto, T. Naniwa, H. Suzuki. Robustness of P-type learning control with a forgetting factor for robotic motions. In Proceedings of the 29th Conference on Decision and Control, IEEE, Honolulu, USA, pp. 2640-2645, 1990.
    [3] K. L. Moore, M. Dahleh, S. P. Bhattacharyya. Iterative learning control: A survey and new results. Journal of Robotic Systems, vol. 9, no. 5, pp. 563-594, 1992.
    [4] M. Yu, J. S. Wang, D. L. Qi. Output-feedback adaptive learning control with unknown control direction. Journal of Zhejiang University (Engineering Science), vol. 47, no. 8, pp. 1424-1430, 2013. (in Chinese)
    [5] D. Q. Huang, X. F. Li, J. X. Xu, C. Xu, W. He. Iterative learning control of inhomogeneous distributed parameter systems-frequency domain design and analysis. Systems & Control Letters, vol. 72, pp. 22-29, 2014.
    [6] S. Arimoto. Robustness of learning control for robot manipulators. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Cincinnati, USA, pp. 1528-1533, 1990.
    [7] X. D. Li, T. F. Xiao, H. X. Zheng. Adaptive discrete-time iterative learning control for non-linear multiple input multiple output systems with iteration-varying initial error and reference trajectory. IET Control Theory & Applications, vol. 5, no. 9, pp. 1131-1139, 2011.
    [8] Z. S. Hou, J. X. Xu, H. W. Zhong. Freeway traffic control using iterative learning control-based ramp metering and speed signaling. IEEE Transactions on Vehicular Technology, vol. 56, no. 2, pp. 466-477, 2007.
    [9] D. Q. Huang, J. X. Xu. Steady-state iterative learning control for a class of nonlinear PDE processes. Journal of Process Control, vol. 21, no. 8, pp. 1155-1163, 2011.
    [10] D. Q. Huang, J. X. Xu, V. Venkataramanan, T. C. T. Huynh. High-performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 1085-1098, 2014.
    [11] D. Q. Huang, J. X. Xu, X. F. Li, C. Xu, M. Yu. D-type anticipatory iterative learning control for a class of inhomogeneous heat equations. Automatica, vol. 49, no. 8, pp. 2397-2408, 2013.
    [12] S. Arimoto. Learning control theory for robotic motion. International Journal of Adaptive Control and Signal Processing, vol. 4, no. 6, pp. 543-564, 1990.
    [13] Y. Q. Chen, C. Y. Wen, M. X. Sun. A robust high-order P-type iterative learning controller using current iteration tracking error. International Journal of Control, vol. 68, no. 2, pp. 331-342, 1997.
    [14] Y. Q. Chen, Z. M. Gong, C. Y. Wen. Analysis of a highorder iterative learning control algorithm for uncertain nonlinear systems with state delays. Automatica, vol. 34, no. 3, pp. 345-353, 1998.
    [15] X. H. Bu, Z. S. Hou. Stability of iterative learning control with data dropouts via asynchronous dynamical system. International Journal of Automation and Computing, vol.8, no. 1, pp. 29-36, 2011.
    [16] D. Q. Huang, Y. Tan, J. X. Xu. A dual-loop iterative learning control for nonlinear systems with hysteresis input uncertainty. In Proceedings of IEEE International Conference on Control and Automation, IEEE, Christchurch, New Zealand, pp. 1116-1121, 2009.
    [17] K. L. Moore, M. H. A. Verwoerd. L1-optimal robust iterative learning controller design. In Proceedings of the American Control Conference, IEEE, Seattle, USA, pp. 3881-3886, 2008.
    [18] W. S. Chen. Novel adaptive learning control of linear systems with completely unknown time delays. International Journal of Automation and Computing, vol. 6, no. 2, pp. 177-185, 2009.
    [19] W. S. Chen, R. H. Li, J. Li. Observer-based adaptive iterative learning control for nonlinear systems with timevarying delays. International Journal of Automation and Computing, vol. 7, no. 4, pp. 438-446, 2010.
    [20] J. M. Li, X. M. Li, K. Xing. Hybrid adaptive iterative learning control of non-uniform trajectory tracking for nonlinear time-delay systems. In Proceedings of the 26th Chinese Control Conference, IEEE, Zhangjiajie, China, pp. 515-519, 2007.
    [21] M. Yu, J. L. Zhang, D. L. Qi. Discrete-time adaptive iterative learning control with unknown control directions. International Journal of Control, Automation and Systems, vol. 10, no. 6, pp. 1111-1118, 2012.
    [22] R.H.Chi,D.W.Wang, Z. S. Hou, S. T. Jin,D. X. Zhang. A discrete-time adaptive iterative learning from different reference trajectory for linear time-varying systems. In Proceedings of the 31st Chinese Control Conference, IEEE, Hefei, China, pp. 3013-3016, 2012.
    [23] Y. Q. Chen, K. L. Moore. Harnessing the non-repetitiveness in iterative learning control. In Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, USA, pp. 3350-3355, 2002.
    [24] K. L. Moore, Y. Q. Chen, H. S. Ahn. Iterative learning control: A tutorial and big picture view. In Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, USA, pp. 2352-2357, 2006.
    [25] A. Tayebi, M. B. Zaremba. Internal model-based robust iterative learning control for uncertain LTI systems. In Proceedings of the 39th IEEE Conference on Decision and Control, IEEE, Sydney, Australia, pp. 3439-3444, 2000.
    [26] W. Zhou, M. Yu, D. L. Qi. Iterative learning control design with high-order internal model for permanent magnet linear motor. In Proceedings of International Conference on Life System Modeling and Simulation and International Conference on Intelligent Computing for Sustainable Energy and Environment, Springer-Verlag, Shanghai, China, pp. 208-217, 2014.
    [27] C. P. Liu, J. X. Xu, J. Wu. On iterative learning control with high-order internal models. International Journal of Adaptive Control and Signal Processing, vol. 24, no. 9, pp. 731-742, 2010.
    [28] C. K. Yin, J. X. Xu, Z. S. Hou. On iterative learning control design for tracking iteration-varying trajectories with high-order internal model. Journal of Control Theory and Applications, vol. 8, no. 3, pp. 309-316, 2010.
    [29] C. K. Yin, J. X. Xu, Z. S. Hou. A high-order internal model based iterative learning control scheme for nonlinear systems with time-iteration-varying parameters. IEEE Transactions on Automatic Control, vol. 55, no. 11, pp. 2665-2670, 2010.
    [30] Y. Fang, T. W. S. Chow. Iterative learning control of linear discrete-time multivariable system. Automatica, vol. 34, no. 11, pp. 1459-1462, 1998.
    [31] M. X. Sun, D. W. Wang. Initial shift issues on discrete-time iterative learning control with system relative degree. IEEE Transactions on Automatic Control, vol. 48, no. 1, pp. 144-148, 2003.
    [32] C. J. Chien. A discrete iterative learning control for a class of nonlinear time-varying systems. IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 748-752, 1998.
    [33] D. W. Wang. Convergence and robustness of discrete time nonlinear systems with iterative learning control. Automatica, vol. 34, no. 11, pp. 1445-1448, 1998.
    [34] R. H. Chi, Z. S. Hou, J. X. Xu. Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition. Automatica, vol. 44, no. 8, pp. 2207-2213, 2008.
    [35] M. Yu, J. S. Wang, D. L. Qi. Discrete-time adaptive iterative learning control for high-order nonlinear systems with unknown control directions. International Journal of Control, vol. 86, no. 2, pp. 299-308, 2013.
    [36] M. Yu, J. S. Wang, D. L. Qi. Feedback nonlinear discretetime systems. International Journal of Systems Science, vol. 45, no. 11, pp. 2251-2259, 2014.
    [37] K. L. Moore. A matrix fraction approach to higher-order iterative learning control: 2-D dynamics through repetitiondomain filtering. In Proceedings of the 2nd International Workshop on Multidimensional Systems, IEEE, Czocha Castle, Poland, pp. 99-104, 2000.
    [38] S. S. Saab. A discrete-time learning control algorithm for a class of linear time-invariant systems. IEEE Transactions on Automatic Control, vol. 40, no. 6, pp. 1138-1142, 1995.
    [39] S. T. Jin, Z. S. Hou, R. H. Chi, Y. Q. Li. Discrete-time adaptive iterative learning control for permanent magnet linear motor. In Proceedings of the 5th IEEE International Conference on Cybernetics and Intelligent Systems, IEEE, Qingdao, China, pp. 69-74, 2011.
    [40] K. K. Tan, S. Y. Lim, S. N. Huang. Two-degree-of-freedom controller incorporating RBF adaptation for precision motion control applications. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, Atlanta, USA, pp. 848-853, 1999.
  • 加载中
  • [1] Fernando Agustín Pazos, Anibal Zanini, Amit Bhaya. Performance Improvement of Discrete-time Linear Control Systems Subject to Varying Sampling Rates Using the Tikhonov Regularization Method . International Journal of Automation and Computing, 2020, 17(3): 453-463.  doi: 10.1007/s11633-019-1205-8
    [2] Piyapong Niamsup, Vu N. Phat. Robust Finite-time H Control of Linear Time-varying Delay Systems with Bounded Control via Riccati Equations . International Journal of Automation and Computing, 2018, 15(3): 355-363.  doi: 10.1007/s11633-016-1018-y
    [3] Cai-Xue Chen,  Yun-Xiang Xie,  Yong-Hong Lan. Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model Observer . International Journal of Automation and Computing, 2015, 12(2): 149-155.  doi: 10.1007/s11633-015-0881-2
    [4] Yu Liu,  Rong-Hu Chi,  Zhong-Sheng Hou. Neural Network State Learning Based Adaptive Terminal ILC for Tracking Iteration-varying Target Points . International Journal of Automation and Computing, 2015, 12(3): 266-272.  doi: 10.1007/s11633-015-0891-0
    [5] Jun-Jun Hui,  He-Xin Zhang,  Xiang-Yu Kong. Delay-dependent Non-fragile H Control for Linear Systems with Interval Time-varying Delay . International Journal of Automation and Computing, 2015, 12(1): 109-116.  doi: 10.1007/s11633-014-0851-0
    [6] Xue-Fang Li,  Jian-Xin Xu. Lifted System Framework for Learning Control with Different Trial Lengths . International Journal of Automation and Computing, 2015, 12(3): 273-280.  doi: 10.1007/s11633-015-0882-1
    [7] David H. Owens,  Chris T. Freeman,  Bing Chu. Generalized Norm Optimal Iterative Learning Control with Intermediate Point and Sub-interval Tracking . International Journal of Automation and Computing, 2015, 12(3): 243-253.  doi: 10.1007/s11633-015-0888-8
    [8] Chiang-Ju Chien,  Yu-Chung Hung,  Rong-Hu Chi. On the Current Error Based Sampled-data Iterative Learning Control with Reduced Memory Capacity . International Journal of Automation and Computing, 2015, 12(3): 307-315.  doi: 10.1007/s11633-015-0890-1
    [9] Xi-Sheng Dai,  Sen-Ping Tian,  Ya-Jun Guo. Iterative Learning Control for Discrete Parabolic Distributed Parameter Systems . International Journal of Automation and Computing, 2015, 12(3): 316-322.  doi: 10.1007/s11633-015-0892-z
    [10] Jian Ding,  Blazej Cichy,  Krzysztof Galkowski,  Eric Rogers,  Hui-Zhong Yang. Robust Fault-tolerant Iterative Learning Control for Discrete Systems via Linear Repetitive Processes Theory . International Journal of Automation and Computing, 2015, 12(3): 254-265.  doi: 10.1007/s11633-015-0883-0
    [11] Xiao-E Ruan,  Zhao-Zhen Li,  Z. Z. Bien. Discrete-frequency Convergence of Iterative Learning Control for Linear Time-invariant systems with Higher-order Relative Degree . International Journal of Automation and Computing, 2015, 12(3): 281-288.  doi: 10.1007/s11633-015-0884-z
    [12] Chun-Li Zhang,  Jun-Min Li. Adaptive Iterative Learning Control of Non-uniform Trajectory Tracking for Strict Feedback Nonlinear Time-varying Systems . International Journal of Automation and Computing, 2014, 11(6): 621-626.  doi: 10.1007/s11633-014-0819-0
    [13] P. Balasubramaniam,  T. Senthilkumar. Delay-dependent Robust Stabilization and H Control for Uncertain Stochastic T-S Fuzzy Systems with Discrete Interval and Distributed Time-varying Delay . International Journal of Automation and Computing, 2013, 10(1): 18-31 .  doi: 10.1007/s11633-013-0692-2
    [14] Zhong-Qiang Wu,  Yang Wang. Dynamic Consensus of High-order Multi-agent Systems and Its Application in the Motion Control of Multiple Mobile Robots . International Journal of Automation and Computing, 2012, 9(1): 54-62.  doi: 10.1007/s11633-012-0616-6
    [15] Dan Li,  Jun-Min Li. Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-varying Delay and Unknown Control Direction . International Journal of Automation and Computing, 2012, 9(6): 578-586 .  doi: 10.1007/s11633-012-0682-9
    [16] Robust Stability and Stabilization of Discrete Singular Systems with Interval Time-varying Delay and Linear Fractional Uncertainty . International Journal of Automation and Computing, 2012, 9(1): 8-15.  doi: 10.1007/s11633-012-0610-z
    [17] Wei-Sheng Chen,  Rui-Hong Li,  Jing Li. Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays . International Journal of Automation and Computing, 2010, 7(4): 438-446.  doi: 10.1007/s11633-010-0525-5
    [18] Na Duan, Fu-Nian Hu, Xin Yu. An Improved Control Algorithm for High-order Nonlinear Systems with Unmodelled Dynamics . International Journal of Automation and Computing, 2009, 6(3): 234-239.  doi: 10.1007/s11633-009-0234-0
    [19] Yong-Gang Chen, Wen-Lin Li. Improved Results on Robust H Control of Uncertain Discrete-time Systems with Time-varying Delay . International Journal of Automation and Computing, 2009, 6(1): 103-108.  doi: 10.1007/s11633-009-0103-x
    [20] Yun Li, Hiroshi Kashiwagi. High-Order Volterra Model Predictive Control and Its Application to a Nonlinear Polymerisation Process . International Journal of Automation and Computing, 2005, 2(2): 208-214.  doi: 10.1007/s11633-005-0208-9
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5483) PDF downloads (1539) Citations (0)

A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems

Fund Project:

This work was supported by National Basic Research Program of China (973 Program)(No. 2012CB316400) and National Natural Science Foundation of China (Nos. 61171034 and 61273134).

Abstract: In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model (HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors (PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.

Wei Zhou, Miao Yu and De-Qing Huang. A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems. International Journal of Automation and Computing, vol. 12, no. 3, pp. 330-336, 2015. doi: 10.1007/s11633-015-0886-x
Citation: Wei Zhou, Miao Yu and De-Qing Huang. A High-order Internal Model Based Iterative Learning Control Scheme for Discrete Linear Time-varying Systems. International Journal of Automation and Computing, vol. 12, no. 3, pp. 330-336, 2015. doi: 10.1007/s11633-015-0886-x
Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return