Shu Liang, Yi-Heng Wei, Jin-Wen Pan, Qing Gao and Yong Wang. Bounded Real Lemmas for Fractional Order Systems. International Journal of Automation and Computing, vol. 12, no. 2, pp. 192-198, 2015. https://doi.org/10.1007/s11633-014-0868-4
Citation: Shu Liang, Yi-Heng Wei, Jin-Wen Pan, Qing Gao and Yong Wang. Bounded Real Lemmas for Fractional Order Systems. International Journal of Automation and Computing, vol. 12, no. 2, pp. 192-198, 2015. https://doi.org/10.1007/s11633-014-0868-4

Bounded Real Lemmas for Fractional Order Systems

doi: 10.1007/s11633-014-0868-4
Funds:

This work was supported by National Natural Science Foundation of China (Nos. 61004017 and 60974103).

  • Received Date: 2012-07-29
  • Rev Recd Date: 2014-04-24
  • Publish Date: 2015-04-01
  • This paper derives the bounded real lemmas corresponding to L norm and H norm (L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality (LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-Yakubovich-Popov (KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism. However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.

     

  • loading
  • [1]
    T. Machado, I. S. Jesus, A. Galhano, J. B. Cunha. Frac-tional order electromagnetics. Signal Processing, vol. 86, no. 10, pp. 2637-2644, 2006.
    [2]
    T. N. Laskin. Fractional quantum mechanics and Levy path integrals. Physics Letters, vol. 268, no. 4, pp. 298-305, 2000.
    [3]
    I. Podlubny. Fractional Differential Equations, San Diego, USA: Academic Press, 1999.
    [4]
    I. Podlubny. Fractional-order systems and PIλ Dμ con-trollers. IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
    [5]
    A. Oustaloup, X. Moreau, M. Nouillant. The CRONE suspension. Control Engineering Practice, vol. 4, no. 8, pp. 1101-1108, 1996.
    [6]
    S. Arunsawatwong, Q. Nguyen. Design of retarded frac-tional delay differential systems using the method of in-equalities. International Journal of Automation and Com-puting, vol. 6, no. 1, pp. 22-28, 2009.
    [7]
    C. M. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu. Fractional Order Systems and Controls: Fundamentals and Applications, London, England: Springer-Verlag, 2010.
    [8]
    D. Matignon. Stability properties for generalized fractional differential systems. ESAIM: Proceedings, vol. 5, pp. 145-158, 1998.
    [9]
    Y. Li, Y. Q. Chen, I. Podlubny. Mittag-Le²er stability of fractional order nonlinear dynamic systems. Automatica, vol. 45, no. 8, pp. 1965-1969, 2009.
    [10]
    Z. Liao, C. Peng, W. Li, Y. Wang. Robust stability analysis for a class of fractional order systems with uncertain pa-rameters. Journal of the Franklin Institute, vol. 348, no. 6, pp. 1101-1113, 2011.
    [11]
    J. Sabatier, M. Moze, C. Farges. LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1594-1609, 2010.
    [12]
    S. Liang, C. Peng, Y. Wang. Improved linear matrix in-equalities stability criteria for fractional order systems and robust stabilization synthesis: The 0 < α < 1 case. Control Theory and Applications, vol. 30, no. 4, pp. 531-535, 2013.
    [13]
    Y. Wang, S. Liang. Two-DOF lifted LMI conditions for ro-bust D-stability of polynomial matrix polytopes. Interna-tional Journal of Control, Automation and Systems, vol. 11, no. 3, pp. 636-642, 2013.
    [14]
    Y. H. Lan, W. J. Zhou, Y. P. Luo. Non-fragile observer de-sign for fractional-order one-sided Lipschitz nonlinear sys-tems. International Journal of Automation and Computing, vol. 10, no. 4, pp. 296-302, 2013.
    [15]
    J. G. Lu, Y. Q. Chen. Robust stability and stabilization of fractional-order interval systems with the fractional order ff: The 0 < α < 1 case. IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 152-158, 2010.
    [16]
    R. Malti, M. Aoun, F. Levron, A. Oustaloup. Analytical computation of the H2 norm of fractional commensurate transfer functions. Automatica, vol. 47, no. 11, pp. 2425-2432, 2011.
    [17]
    L. Fadiga, C. Farges, J. Sabatier, M. Moze. On computation of H norm for commensurate fractional order systems. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, Orlando, FL, USA, pp. 8231-8236, 2011.
    [18]
    J. Sabatier, M. Moze, A. Oustaloup. On fractional systems H norm computation. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, IEEE, Seville, Spain, pp. 5758-5763, 2005.
    [19]
    M. Moze, J. Sabatier, A. Oustaloup. On bounded real lemma for fractional systems. In Proceedings of the 17th IFAC World Congress, IFAC, COEX, Korea, pp. 15267-15272, 2008.
    [20]
    S. Liang, C. Peng, Z. Liao, Y. Wang. State space ap-proximation for general fractional order dynamic systems. International Journal of Systems Science, vol. 45, no. 10, pp. 2203-2212, 2014.
    [21]
    L. Fadiga, J. Sabatier, C. Farges. H state feedback control of commensurate fractional order systems. In Proceedings of IFACWorkshop on Fractional Differentiation and Its Ap-plications, IFAC, Grenoble, France, vol. 6, pp. 54-59, 2013.
    [22]
    J. Shen, J. Lam. State feedback H control of commensu-rate fractional-order systems. International Journal of Sys-tems Science, vol. 45, no. 3, pp. 363-372, 2014.
    [23]
    J. Shen, J. Lam. H model reduction for positive frac-tional order systems. Asian Journal of Control, vol. 16, no. 2, pp. 441-450, 2014.
    [24]
    L. Fadiga, C. Farges, J. Sabatier, K. Santugini. H output feedback control of commensurate fractional order systems. In Proceedings of the European Control Conference, IEEE, Zurich, Switzerland, pp. 4538-4543, 2013.
    [25]
    M. Green, D. J. N. Limebeer. Linear Robust Control, NJ, USA: Upper Saddle River, Prentice-Hall, Inc., 1995.
    [26]
    T. Iwasaki, S. Hara. Generalized KYP lemma: Unified fre-quency domain inequalities with design applications. IEEE Transactions on Automatic Control, vol. 50, no. 1, pp. 41-59, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5947) PDF downloads(1819) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return