Volume 12 Number 4
August 2015
Article Contents
Esmat Sadat Alaviyan Shahri and Saeed Balochian. Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization. International Journal of Automation and Computing, vol. 12, no. 4, pp. 440-447, 2015. doi: 10.1007/s11633-014-0856-8
Cite as: Esmat Sadat Alaviyan Shahri and Saeed Balochian. Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization. International Journal of Automation and Computing, vol. 12, no. 4, pp. 440-447, 2015. doi: 10.1007/s11633-014-0856-8

Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization

  • Received: 2013-09-05
  • In this paper, local stability and performance analysis of fractional-order linear systems with saturating elements are shown, which lead to less conservative information and data on the region of stability and the disturbance rejection. Then, a standard performance analysis and global stability by using Lyapunov s second method are addressed, and the introduction of Lyapunov s function candidate whose sub-level set provide stability region and performance with a restricted state space origin is also addressed. The results include both single and multiple saturation elements and can be extended to fractional-order linear systems with any nonlinear elements and nonlinear noise that satisfy Lipschitz condition. A noticeable application of these techniques is analysis of control fractional-order linear systems with saturation control inputs.
  • [1] Y. Li, Y. Q. Chen, I. Podlubny. Mittag-leffler stability of fractional order nonlinear dynamic system. Automatica, vol. 45, no. 8, pp. 1965-1969, 2009.
    [2] J. C. Trigeassou, N. Maamri, J. Sabatier, A. Oustalou. A Lyapunov approach to the stability of fractional differential equations. Signal Processing, vol. 91, no. 3, pp. 437-445, 2011.
    [3] J. J. Sabatier, M. Moze, C. Farges. LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1594-1609, 2010.
    [4] Y. Li, Y. Q. Chen, I. Podlubny. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1810-1821, 2010.
    [5] Y. Q. Chen. Ubiquitous fractional order controls? In Proceedings of the Second IFAC Workshop on Fractional Derivatives and Applications, ISEP, Porto, Portugal, pp. 481-492, 2006.
    [6] S. Y. Xing, J. G. Lu. Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach. Chaos, Solitons and Fractals, vol. 42, no. 2, pp. 1163-1169, 2009.
    [7] H. Delavari, D. Baleanu, J. Sadati. Stability analysis of caputo fractional-order nonlinear system revisited. Nonlinear Dynamics, vol. 67, no. 4, pp. 2433-2439, 2012.
    [8] H. Delavari, R. Ghaderi, A. Ranjbar, N. S. Momani. Fractional order controller for two-degree of freedom polar robot. In Proceedings of International Workshop on New Trends in Science and Technology, Ankara, Turkey, 2008.
    [9] C. Farges, J. Sabatier, M. Moze. Fractional order polytopic systems: Robust stability and stabilisation. Advances in Difference Equations, 2011. (Online first)
    [10] S. Balochian, A. K. Sedigh, A. Zare. Stabilization of multiinput hybrid fractional order systems with state delay. ISA Transactions, vol. 50, no. 1, pp. 21-27, 2011.
    [11] S. Balochian, A. K. Sedigh. Sufficient condition for stabilization of linear time invariant fractional order switched systems and variable structure control stabilizers. ISA Transactions, vol. 51, no. 1, pp. 65-73, 2012.
    [12] M. Y. Ongun, D. Arslan, R. Garrappa. Nonstandard finite difference schemes for a fractional order Brusselator system. Advance in Difference Equations, 2013. (Online first)
    [13] H. S. Ahn, Y. Q. Chen. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, vol. 44, no. 11, pp. 2985-2988, 2008.
    [14] I. Petras. Fractional-order Nonlinear Systems Modeling, Berlin and Heidelberg, Germany: Springer-Verlag, 2011.
    [15] M. O. Efe. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct drive robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 6, pp. 1561-1570, 2008.
    [16] M. Pourgholi, V. J. Majd. A nonlinear adaptive resilient observer design for a class of lipschitz systems using LMI. Journal of Circuits, Systems, and Signal Processing, vol. 30, no. 6, pp. 1401-1415, 2011.
    [17] E. Amini Boroujeni, H. R. Momeni. Observer based control of a class of nonlinear fractional order system using LMI. World Academy of Science, Engineering and Technology, vol. 61, pp. 779-782, 2012.
    [18] Y. Chen, B. M. Vinagre, D. Xue, V. Feliu. Fractional-Order Systems and Controls Fundamentals and Applications, London, UK: Springer-Verlag, 2010.
    [19] I. Petras, D. Bednarova. Control of fractional-order nonlinear system: A review. Acta Mechanica et Automatica, vol. 5, no. 2, pp. 96-100, 2011.
    [20] D. Baleanu, Z. B. Guven, J. A. T. Machado. New Trends in Nanotechnology and Fractional Calculus Applications, Netherlands: Springer, 2010.
    [21] M. D. Ortigueira. An introduction to the fractional continuous-time linear systems: The 21st century systems. IEEE Circuits and Systems Magazine, vol. 8, no. 3, pp. 19-26, 2008.
    [22] J. Sabatier, O. P. Agrawal, J. A. T. Machado. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, London, UK: Springer, 2007.
    [23] B. Guo, D. Huang. Existence and stability of standing waves for nonlinear fractional Schrödinger equations. Journal of Mathematical Physics, vol. 53, no. 8, Article number 083702, 2012.
    [24] N. Laskin. Fractional quantum mechanics. Physical Review E, vol. 62, pp. 3135-3145, 2000.
    [25] R. Metzler, J. Klafter. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, vol. 37, no. 31, pp.R161-R208, 2004.
    [26] S. Das. Functional Fractional Calculus, 2nd ed., Berlin Heidelberg, Germany: Springer-Verlag, pp. 1-220, 2011.
    [27] L. Stamova, G. Stamov. Lipschitz stability criteria for functional differential systems of fractional. Journal of Mathematical Physics, vol. 54, no. 4, Article number 043502, 2013.
    [28] R. Magin, M. D. Ortigueira, I. Podlubny, J. Trujillo. On the fractional signals and systems. Signal Processing, vol. 91, no. 3, pp. 350-371, 2011.
    [29] F. Liu, M. M. Meerschaert, S. Momani, N. N. Leonenko, W. Chen, O. P. Agrawal. Fractional differential equations. International Journal of Differential Equations, vol. 2010, Article number 215856, 2010.
    [30] L. G. Yuan, Q. G. Yang. Parameter identification and synchronization of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 305-316, 2012.
    [31] J. J. E. Slotin, W. A. Li. Applied Nonlinear Control, Englewood Cliffs, New Jersey, USA: Prentice Hall, 1991.
    [32] H. Hindi, S. Boyd. Analysis of linear systems with saturation using convex optimization. In Proceedings of the 37th IEEE Conference on Decision and Control, IEEE, Florida, USA, pp. 903-908, 1998.
    [33] L. Ghaoui, S. Niculescu. Advances in Linear Matrix Inequality Method in Control, Philadelphia, USA: Society for Industrial and Applied Mathematics, 2000.
    [34] T. S. Hu, Z. L. Lin, B. M. Chen. An analysis and design method for linear system subject to actuator saturation and disturbance. Automatica, vol. 38, no. 2, pp. 351-359, 2002.c
  • 加载中
  • [1] Zhan Li, Sheng-Ri Xue, Xing-Hu Yu, Hui-Jun Gao. Controller Optimization for Multirate Systems Based on Reinforcement Learning . International Journal of Automation and Computing, 2020, 17(3): 417-427.  doi: 10.1007/s11633-020-1229-0
    [2] Ze-Wen Wang, Jin-Hua She, Guang-Jun Wang. Adaptive Equivalent-input-disturbance Approach to Improving Disturbance-rejection Performance . International Journal of Automation and Computing, 2020, 17(5): 701-712.  doi: 10.1007/s11633-020-1230-7
    [3] Horacio Coral-Enriquez, Santiago Pulido-Guerrero, John Cortés-Romero. Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes . International Journal of Automation and Computing, 2019, 16(6): 812-827.  doi: 10.1007/s11633-019-1179-6
    [4] Cui-Mei Jiang, Shu-Tang Liu, Fang-Fang Zhang. Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems . International Journal of Automation and Computing, 2018, 15(5): 603-615.  doi: 10.1007/s11633-016-0985-3
    [5] J. Alvarez-Munoz, N. Marchand, J. F. Guerrero-Castellanos, J. J. Tellez-Guzman, J. Escareno, M. Rakotondrabe. Rotorcraft with a 3DOF Rigid Manipulator: Quaternion-based Modeling and Real-time Control Tolerant to Multi-body Couplings . International Journal of Automation and Computing, 2018, 15(5): 547-558.  doi: 10.1007/s11633-018-1145-8
    [6] Jie Bao, Hong Yue, William E. Leithead, Ji-Qiang Wang. Feedforward Control for Wind Turbine Load Reduction with Pseudo-LIDAR Measurement . International Journal of Automation and Computing, 2018, 15(2): 142-155.  doi: 10.1007/s11633-017-1103-x
    [7] Zhe Gao, Li-Rong Zhai, Yan-Dong Liu. Robust Stabilizing Regions of Fractional-order PIλ Controllers for Fractional-order Systems with Time-delays . International Journal of Automation and Computing, 2017, 14(3): 340-349.  doi: 10.1007/s11633-015-0941-7
    [8] Xin-Quan Zhang, Xiao-Yin Li, Jun Zhao. Stability Analysis and Anti-windup Design of Switched Systems with Actuator Saturation . International Journal of Automation and Computing, 2017, 14(5): 615-625.  doi: 10.1007/s11633-015-0920-z
    [9] Shu Liang,  Yi-Heng Wei,  Jin-Wen Pan,  Qing Gao,  Yong Wang. Bounded Real Lemmas for Fractional Order Systems . International Journal of Automation and Computing, 2015, 12(2): 192-198.  doi: 10.1007/s11633-014-0868-4
    [10] Ping-Ping Dai,  Cheng-Lin,  Liu Fei Liu. Consensus Problem of Heterogeneous Multi-agent Systems with Time Delay under Fixed and Switching Topologies . International Journal of Automation and Computing, 2014, 11(3): 340-346.  doi: 10.1007/s11633-014-0798-1
    [11] Xiao-Fang Hong, Yu-Zhen Wang, Hai-Tao Li. Robust H Filter Design for Time-delay Systems with Saturation . International Journal of Automation and Computing, 2013, 10(4): 368-374.  doi: 10.1007/s11633-013-0733-x
    [12] Yong-Hong Lan, Wen-Jie Li, Yan Zhou, Yi-Ping Luo. Non-fragile Observer Design for Fractional-order One-sided Lipschitz Nonlinear Systems . International Journal of Automation and Computing, 2013, 10(4): 296-302.  doi: 10.1007/s11633-013-0724-y
    [13] Tanka Nath Dhamala, Gyan Bahadur Thapa, Hong-Nian Yu. An Efficient Frontier for Sum Deviation JIT Sequencing Problem in Mixed-model Systems via Apportionment . International Journal of Automation and Computing, 2012, 9(1): 87-97.  doi: 10.1007/s11633-012-0620-x
    [14] Xin-Quan Zhang, Jun Zhao. L2-gain Analysis and Anti-windup Design of Discrete- time Switched Systems with Actuator Saturation . International Journal of Automation and Computing, 2012, 9(4): 369-377.  doi: 10.1007/s11633-012-0657-x
    [15] Lei-Po Liu,  Zhu-Mu Fu,  Xiao-Na Song. Sliding Mode Control with Disturbance Observer for Class of Nonlinear Systems . International Journal of Automation and Computing, 2012, 9(5): 487-491.  doi: 10.1007/s11633-012-0671-z
    [16] Hossein Beikzadeh, Hamid D. Taghirad. Exponential Nonlinear Observer Based on the Differential State-dependent Riccati Equation . International Journal of Automation and Computing, 2012, 9(4): 358-368.  doi: 10.1007/s11633-012-0656-y
    [17] Tadashi Ishihara, Takahiko Ono. Two-step Design of Critical Control Systems Using Disturbance Cancellation Integral Controllers . International Journal of Automation and Computing, 2011, 8(1): 37-45.  doi: 10.1007/s11633-010-0552-2
    [18] Suchin Arunsawatwong,  Van Quang Nguyen. Design of Retarded Fractional Delay Differential Systems Using the Method of Inequalities . International Journal of Automation and Computing, 2009, 6(1): 22-28.  doi: 10.1007/s11633-009-0022-x
    [19] Ling-Lai Li,  Dong-Hua Zhou,  Ling Wang. Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm . International Journal of Automation and Computing, 2007, 4(2): 183-188.  doi: 10.1007/s11633-007-0183-4
    [20] Xiao-Bing Hu, Wen-Hua Chen. Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control . International Journal of Automation and Computing, 2007, 4(2): 195-202.  doi: 10.1007/s11633-007-0195-0
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5679) PDF downloads (4505) Citations (0)

Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization

Abstract: In this paper, local stability and performance analysis of fractional-order linear systems with saturating elements are shown, which lead to less conservative information and data on the region of stability and the disturbance rejection. Then, a standard performance analysis and global stability by using Lyapunov s second method are addressed, and the introduction of Lyapunov s function candidate whose sub-level set provide stability region and performance with a restricted state space origin is also addressed. The results include both single and multiple saturation elements and can be extended to fractional-order linear systems with any nonlinear elements and nonlinear noise that satisfy Lipschitz condition. A noticeable application of these techniques is analysis of control fractional-order linear systems with saturation control inputs.

Esmat Sadat Alaviyan Shahri and Saeed Balochian. Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization. International Journal of Automation and Computing, vol. 12, no. 4, pp. 440-447, 2015. doi: 10.1007/s11633-014-0856-8
Citation: Esmat Sadat Alaviyan Shahri and Saeed Balochian. Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization. International Journal of Automation and Computing, vol. 12, no. 4, pp. 440-447, 2015. doi: 10.1007/s11633-014-0856-8
Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return