Mohamadreza Homayounzade, Mehdi Keshmiri and Mostafa Ghobadi. A Robust Tracking Controller for Electrically Driven Robot Manipulators: Stability Analysis and Experiment. International Journal of Automation and Computing, vol. 12, no. 1, pp. 83-92, 2015. https://doi.org/10.1007/s11633-014-0850-1
Citation: Mohamadreza Homayounzade, Mehdi Keshmiri and Mostafa Ghobadi. A Robust Tracking Controller for Electrically Driven Robot Manipulators: Stability Analysis and Experiment. International Journal of Automation and Computing, vol. 12, no. 1, pp. 83-92, 2015. https://doi.org/10.1007/s11633-014-0850-1

A Robust Tracking Controller for Electrically Driven Robot Manipulators: Stability Analysis and Experiment

doi: 10.1007/s11633-014-0850-1
  • Received Date: 2013-02-04
  • Rev Recd Date: 2014-03-13
  • Publish Date: 2015-02-01
  • In this paper, a robust controller for electrically driven robotic systems is developed. The controller is designed in a backstepping manner. The main features of the controller are: 1) Control strategy is developed at the voltage level and can deal with both mechanical and electrical uncertainties. 2) The proposed control law removes the restriction of previous robust methods on the upper bound of system uncertainties. 3) It also benefits from global asymptotic stability in the Lyapunov sense. It is worth to mention that the proposed controller can be utilized for constrained and nonconstrained robotic systems. The effectiveness of the proposed controller is verified by simulations for a two link robot manipulator and a four-bar linkage. In addition to simulation results, experimental results on a two link serial manipulator are included to demonstrate the performance of the proposed controller in tracking a given trajectory.

     

  • loading
  • [1]
    Z. H. Qu, D. M. Dawson. Robust Tracking Control of Robot Manipulators, Piscataway, USA: IEEE Press, 1996.
    [2]
    C. Abdallah, D. Dawson, P. Dorato, M. Jamshidi. Survey of robust control for rigid robots. IEEE Control Systems, vol. 11, no. 2, pp. 24-30, 1991.
    [3]
    J. H. Shin, K. B. Park, S. W. Kim, J. J. Lee. Robust adaptive control for robot manipulators using regressor-based form. In Proceedings of IEEE International Conference on Systems Manufacturing and Cybernetics, IEEE, San Antonio, USA, vol. 3, pp. 2063-2068, 1994.
    [4]
    J. Huang, Z. Chen. A general framework for tackling the output regulation problem. IEEE Transactions on Automatic Control, vol. 49, no. 12, pp. 2203-2218, 2004.
    [5]
    M. Boukattaya, T. Damak, M. Jallouli. Robust adaptive control for mobile manipulators. International Journal of Automation and Computing, vol. 8, no. 1, pp. 8-13, 2011.
    [6]
    M. Z. Hou, A. G. Wu, G. R. Duan. Robust output feedback control for a class of nonlinear systems with input unmodeled dynamics. International Journal of Automation and Computing, vol. 5, no. 3, pp. 307-312, 2008.
    [7]
    M. W. Spong. On the robust control of robot manipulators. IEEE Transactions on Automatic Control, vol. 37, no. 11, pp. 1782-1786, 1992.
    [8]
    G. Liu. Decomposition-based control of mechanical systems. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, IEEE, Halifax, Canada, vol. 2, pp. 966-970, 2000.
    [9]
    H. D. Taghirad, M. A. Khosravi. Design and simulation of robust composite controllers for flexible joint robots. In Proceedings of ICRA IEEE International Conference on Robotics and Automation, IEEE, Taipei, Taiwan, China, vol. 3, pp. 3108-3113, 2003.
    [10]
    C. Ham, Z. Qu, R. Johnson. Robust fuzzy control for robot manipulators. In Proceedings of Control Theory Applications, vol. 147, no. 2, pp. 212-216, 2000.
    [11]
    Q. J. Chen, H. T. Chen, Y. J. Wang, P. Y. Woo. Robust adaptive trajectory tracking independent of models for robotic manipulators. Journal of Robotic Systems, vol. 18, no. 9, pp. 545-551, 2001.
    [12]
    D. K. Chwa. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control System Technology, vol. 12, no. 4, pp. 637-644, 2004.
    [13]
    Z. P. Wang, S. S. Ge, T. H. Lee. Robust motion/force control of uncertain holonomic/nonholonomic mechanical systems. IEEE Transactions on Mechatronics, vol. 9, no. 1, pp. 118-123, 2004.
    [14]
    B. Bandyopadhyay, S. Janardhanan, V. Sreeram. Sliding mode control design via reduced order model approach. International Journal of Automation and Computing, vol.4, no. 4, pp. 329-334, 2007.
    [15]
    M. M. Fateh, S. Fateh. A precise robust fuzzy control of robots using voltage control strategy. International Journal of Automation and Computing, vol. 10, no. 1, pp. 64-72, 2013.
    [16]
    M. Homayounzade, M. Keshmiri. On the robust tracking control of kinematically constrained robot manipulators. In Proceedings of IEEE International Conference on Mechatronics, IEEE, Istanbul, Turkey, pp. 248-253, 2011.
    [17]
    M. C. Good, L. M. Sweet, K. L. Strobel. Dynamic models for control system design of integrated robot and drive systems. Journal of Dynamic System Measurement and Control, vol. 107, no. 1, pp. 53-59, 1985.
    [18]
    T. J. Tarn, A. K. Bejczy, X. Yun, Z. Li. Effect of motor dynamics on nonlinear feedback robot arm control. IEEE Transactions on Robotics and Automation, vol. 7, no. 1, pp. 114-122, 1991.
    [19]
    D. M. Dawson, Z. Qu, J. J. Carol. Tracking control of rigid-link electrically driven robot manipulator. International Journal of Control, vol. 56, no. 5, pp. 911-1006, 1992.
    [20]
    C. Ishii, T. Shen, Z. Qu. Lyapunov recursive design of robust tracking control with L2-gain performance for electrically-driven robot manipulators. International Journal of Control, vol. 74, no. 8, pp. 811-828, 2001.
    [21]
    J. P. Hwang, E. Kim. Robust tracking control of an electrically driven robot: Adaptive fuzzy logic approach. IEEE Transactions on Fuzzy Systems, vol. 14, no. 2, pp. 232-247, 2006.
    [22]
    Y. C. Chang, T. Hsien. Adaptive tracking control for electrically-driven robots without overparameterization. International Journal of Adaptive Control and Signal Processing, vol. 16, no. 2, pp. 123-150, 2002.
    [23]
    M. M. Fateh, M. Baluchzadeh. Modeling and robust discrete LQ repetitive control of electrically driven robots. International Journal of Automation and Computing, vol. 10, no. 5, pp. 472-480, 2013.
    [24]
    M. M. Fateh. Robust control of electrical manipulators by joint acceleration. International Journal of Innovative Computing, Information and Control, vol. 6, no. 12, pp. 5501-5510, 2010.
    [25]
    M. M. Fateh, H. A. Tehrani, S. M. Karbassi. Repetitive control of electrically driven robot manipulators. International Journal of Systems Science, vol. 44, no. 4, pp. 775-785, 2011.
    [26]
    J. Slotine, W. Li. Theoretical issues in adaptive control. In Proceedings of the 5th Yale Workshop on Applications of Adaptive Systems Theory, New Haven, USA, pp. 252-259, 1985.
    [27]
    K. Khayati, P. Bigras, L. A. Dessaint. A multistage position/ force control for constrained robotic systems with friction: Joint-space decomposition, linearization, and multiobjective observer/controller synthesis using LMI formalism. IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1698-1712, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4500) PDF downloads(1555) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return