Volume 11 Number 5
October 2014
Article Contents
Huan Liu, Ying Xiao, Wei-Dong Tang and Yan-Hui Zhou. Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction. International Journal of Automation and Computing, vol. 11, no. 5, pp. 469-479, 2014. doi: 10.1007/s11633-014-0829-y
Cite as: Huan Liu, Ying Xiao, Wei-Dong Tang and Yan-Hui Zhou. Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction. International Journal of Automation and Computing, vol. 11, no. 5, pp. 469-479, 2014. doi: 10.1007/s11633-014-0829-y

Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction

  • Received: 2013-12-24
Fund Project:

This work was supported by National Natural Science Foundation of China (No. 61462046), Jiangxi Province Education Department of Science and Technology (Nos.GJJ13539, GJJ12465, GJJ13553, GJJ14558 and GJJ14559), Jiangxi Province Science and Technology (No. 20123BBE50076), and Jinggangshan University Doctoral Scientific Research Foundation (No. 20111101).

  • This paper puts forward a method for abdomen panorama reconstruction based on a stereo vision system. For the purpose of recovering the abdomen completely and accurately under the condition of actual photographing with illumination variance and blur noise, some innovative combined feature descriptors are presented on the basis of Hu-moment invariants. Furthermore, considering the study on the abdomen surface reconstruction, a circle template which is divided into 6 sectors is designed. It is noted that a descriptor merely using gray intensity is not able to provide sufficient information for feature description. Consequently, the sector entropy which denotes the structure characteristics is drawn into the feature descriptor. By means of the combined effect of the gray intensity and the sector entropy, the similarity measurement is conducted for the final abdomen reconstruction. The experimental results reveal that the proposed method can acquire a high precision of abdomen reconstruction similar to the 3D scanner. This stereo vision system has wide practicability in the field of clothing.
  • [1] S. Y. Baek, K. W. Lee. Parametric human body shapemodeling framework for human-centered product design.Computer-aided Design, vol. 44, no. 1, pp. 56-67, 2012.
    [2] J. T. Li, Y. S. Wang, X. Zhou. Personal virtual humanmodeling from images. Journal of Computer-Aided Design& Computer Graphics, vol. 20, no. 5, pp. 554-559, 2008. (inChinese)
    [3] E. Amstutz, T. Teshima, K. Kimura, M. Mochimaru, H.Saito. PCA-based 3D shape reconstruction of human footusing multiple viewpoint cameras. International Journalof Automation and Computing, vol. 5, no. 3, pp. 217-225,2008.
    [4] W. R. Yu, B. G. Xu. A portable stereo vision system forwhole body surface imaging. Image and Vision Computing,vol. 28, no. 4, pp. 605-613, 2010.
    [5] J. L. Zhou, S. Y. Zhang. A modeling and comparisonmethod for foot based on passive stereo vision. Journalof Computer-aided Design & Computer Graphics, vol. 21,no. 6, pp. 782-788, 2009. (in Chinese)
    [6] F. Gao, Q. Wang, W. D. Geng, Y. H. Pan. Threedimensionaldynamic foot shape measuring method. Journalof Science China, vol. 6, no. 41, pp. 659-674, 2011. (inChinese)
    [7] Y. B. Zou, F. M. Dong, B. J. Lei, L. L. Fang, S. F. Sun.Image thresholding based on template matching with arctangentHausdorff distance measure. Optics and Lasers inEngineering, vol. 51, no. 5, pp. 600-609, 2013.
    [8] F. C. Wu, Z. H. Wang, X. G. Wang. Feature vector fieldand feature matching. Pattern Recognition, vol. 43, no. 10,pp. 3237-3281, 2010.
    [9] D. D. Yang, A. Sluzek. A low-dimensional local descriptorincorporating TPS warping for image matching. Image andVision Computing, vol. 28, no. 8, pp. 1184-1195, 2010.
    [10] P. R. Sanz, B. R. Mezcua, J. M. S. Pena, J. P. Thiran.Segment-based real time stereo vision matching using characteristicvectors. Journal of Imaging Science and Technology,vol. 55, no. 5, pp. 050201-1-050201-7, 2011.
    [11] C. Harris, M. Stephens. A combined corner and edge detector.In Proceedings of the 4th Alvey Vision Conference,Manchester, UK, pp. 147-151, 1988.
    [12] C. Schimid, R. Mohr, C. Bauckhage. Evaluation of interestpoint detectors. International Journal of Computer Vision,vol. 37, no. 2, pp. 151-172, 2000.
    [13] D. G. Lone. Object recognition from local scale-invariantfratures. In Proceedings of IEEE International Conferenceon Computer Vision, IEEE, Greece, pp. 1150-1157, 1999.
    [14] D. G. Lone. Distinctive image features from scaleinvariantKeypoints. International Joural of Computer Vision,vol. 60, no. 2, pp. 91-110, 2004.
    [15] J. Matas, O. Chum, M. Urban, T. Pajdla. Robust widebaselinestereo from maximally stable extremal regions. ImageVision Computing, vol. 22, no. 10, pp. 761-767, 2004.
    [16] E. Tola, V. Lepetit, P. Fua. Daisy: An efficient dense descriptorapplied to wide-baseline stereo. IEEE Transactionson Pattern Analysis and Machine Intelligence, vol. 32, no. 5,pp. 815-830, 2010.
    [17] S. Leutenegger, M. Chli, R. Siegwart. BRISK: Binary robustinvariant scalable keypoints. In Proceedings of the2011 IEEE International Conference on Computer Vision,IEEE, Switzerland, pp. 2548-2555, 2011.
    [18] E. Mair, G. D. Hager, D. Burschka, M. Suppa, G. Hirzinger.Adaptive and generic corner detection based on the acceleratedsegment test. In Proceedings of the 11th EuropeanConference on Computer Vision, Springer, Berlin Heidelbergpp. 183-196, 2010.
    [19] A. Alahi, R. Ortiz, P. Vandergheynst. FREAK: Fast retinakeypoint. In Proceedings of the 2012 IEEE Conference onComputer Vision and Pattern Recognition, IEEE, Providence,USA, pp. 510-517, 2012.
    [20] Y. H. Tang, H. Z. Lu, M. F. Hu. An image matching algorithmbased on SCCH feature descriptor. Journal of Electronicsand Information Technology, vol. 33, no. 9, pp. 2152-2157, 2011. (in Chinese)
    [21] G. Wu, C. F.Wu, Q. Y. Hou. Target location method basedon invariable moment feature matching. Optics and PrecisionEngineering, vol. 17, no. 2, pp. 460-468, 2009.
    [22] Q. G. Miao, J. Liu, W. S. Li, J. J. Shi, Y. D. Wang. Threenovel invariant moments based on radon and polar harmonictransform. Optics Communications, vol. 285, no. 6,pp. 1044-1048, 2012.
    [23] J. Flusser, T. Suk, S. Saic. Recognition of blurred imagesby the method of moments. IEEE Transactions on ImageProcessing, vol. 5, no. 3, pp. 533-538, 1996.
    [24] M. K. Hu. Visual pattern recognition by moment invariants.IEEE Transactions on Information Theory, vol. 8, no. 2,pp. 179-187, 1962.
    [25] T. Suk, J. Flusser. Combined blur and affine moment invariantsand their use in pattern recognition. Pattern Recognition,vol. 36, no. 12, pp. 2895-2907, 2003.
    [26] J. Flusser, T. Suk. Degraded image analysis: An invariantapproach. IEEE Transactions on Pattern Analysis andMachine Intelligence, vol. 20, no. 6, pp. 590-603, 1998.
    [27] Y. N. Zhang, C. Y. Wen, Y. Zhang, Y. C. Soh. Determinationof blur and affine combined invariants by normalization.Pattern Recognition, vol. 35, no. 1, pp. 211-221, 2002.
    [28] X. Wang, R. C. Zhao. Pattern recognition by combinedinvariants. Chinese Journal of Electronics, vol. 10, no. 4,pp. 480-483, 2001. (in Chinese)
    [29] Y. Bentoutou, N. Taleb, M. Chikr EI Mezouar, M. Taleb, L.Jetto. An invariant approach for image registration in digitalsubtraction angiography. Pattern Recognition, vol. 35,no. 12, pp. 2853-2865, 2002.
    [30] J. Flusser, J. Boldyš, B. Zitová. Moment forms invariant torotation and blur in arbitrary number of dimensions. IEEETransactions on Pattern Analysis and Machine Intelligence,vol. 25, no. 2, pp. 234-246, 2003.
    [31] Y. N. Zhang, C. Y. Wen, Y. Zhang, Y. C. Soh. Determinationof blur and affine combined invariants by normalization.Pattern Recognition, vol. 35, no. 1, pp. 211-221, 2002.
  • 加载中
  • [1] Wei-Ping Ma, Wen-Xin Li, Peng-Xia Cao. Binocular Vision Object Positioning Method for Robots Based on Coarse-fine Stereo Matching . International Journal of Automation and Computing, 2020, 17(4): 562-571.  doi: 10.1007/s11633-020-1226-3
    [2] Viet-Anh Le, Hai-Xuan Le, Linh Nguyen, Minh-Xuan Phan. An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes . International Journal of Automation and Computing, 2019, 16(5): 614-627.  doi: 10.1007/s11633-019-1174-y
    [3] Qiang Fu, Xiang-Yang Chen, Wei He. A Survey on 3D Visual Tracking of Multicopters . International Journal of Automation and Computing, 2019, 16(6): 707-719.  doi: 10.1007/s11633-019-1199-2
    [4] Bing-Xing Wu, Suat Utku Ay, Ahmed Abdel-Rahim. Pedestrian Height Estimation and 3D Reconstruction Using Pixel-resolution Mapping Method Without Special Patterns . International Journal of Automation and Computing, 2019, 16(4): 449-461.  doi: 10.1007/s11633-019-1170-2
    [5] Xian-Xia Zhang, Zhi-Qiang Fu, Shao-Yuan Li, Tao Zou, Bing Wang. A Time/Space Separation Based 3D Fuzzy Modeling Approach for Nonlinear Spatially Distributed Systems . International Journal of Automation and Computing, 2018, 15(1): 52-65.  doi: 10.1007/s11633-017-1080-0
    [6] Mostafa El Mallahi, Jaouad El Mekkaoui, Amal Zouhri, Hicham Amakdouf, Hassan Qjidaa. Rotation Scaling and Translation Invariants of 3D Radial Shifted Legendre Moments . International Journal of Automation and Computing, 2018, 15(2): 169-180.  doi: 10.1007/s11633-017-1105-8
    [7] Fusaomi Nagata, Keigo Watanabe, Maki K. Habib. Machining Robot with Vibrational Motion and 3D Printer-like Data Interface . International Journal of Automation and Computing, 2018, 15(1): 1-12.  doi: 10.1007/s11633-017-1101-z
    [8] Mostafa El Mallahi, Amal Zouhri, Anass El Affar, Ahmed Tahiri, Hassan Qjidaa. Radial Hahn Moment Invariants for 2D and 3D Image Recognition . International Journal of Automation and Computing, 2018, 15(3): 277-289.  doi: 10.1007/s11633-017-1071-1
    [9] Yi Yang, Fan Qiu, Hao Li, Lu Zhang, Mei-Ling Wang, Meng-Yin Fu. Large-scale 3D Semantic Mapping Using Stereo Vision . International Journal of Automation and Computing, 2018, 15(2): 194-206.  doi: 10.1007/s11633-018-1118-y
    [10] Jian-Wei Li, Wei Gao, Yi-Hong Wu. Elaborate Scene Reconstruction with a Consumer Depth Camera . International Journal of Automation and Computing, 2018, 15(4): 443-453.  doi: 10.1007/s11633-018-1114-2
    [11] Ling-Yi Xu, Zhi-Qiang Cao, Peng Zhao, Chao Zhou. A New Monocular Vision Measurement Method to Estimate 3D Positions of Objects on Floor . International Journal of Automation and Computing, 2017, 14(2): 159-168.  doi: 10.1007/s11633-016-1047-6
    [12] Merras Mostafa, El Hazzat Soulaiman, Saaidi Abderrahim, Satori Khalid, Gadhi Nazih Abderrazak. 3D Face Reconstruction Using Images from Cameras with Varying Parameters . International Journal of Automation and Computing, 2017, 14(6): 661-671.  doi: 10.1007/s11633-016-0999-x
    [13] Zhi-Heng Wang, Qin-Feng Song, Hong-Min Liu, Zhan-Qiang Huo. Absence Importance and Its Application to Feature Detection and Matching . International Journal of Automation and Computing, 2016, 13(5): 480-490.  doi: 10.1007/s11633-015-0925-7
    [14] Wei-Hua Chen,  Yuan-Yuan Liu,  Fu-Hua Zhang,  Yong-Ze Yu,  Hai-Ping Chen,  Qing-Xi Hu. Osteochondral Integrated Scaffolds with Gradient Structure by 3D Printing Forming . International Journal of Automation and Computing, 2015, 12(2): 220-228.  doi: 10.1007/s11633-014-0853-y
    [15] Fei Yan, Yi-Sha Liu, Ji-Zhong Xiao. Path Planning in Complex 3D Environments Using a Probabilistic Roadmap Method . International Journal of Automation and Computing, 2013, 10(6): 525-533.  doi: 10.1007/s11633-013-0750-9
    [16] Xiao-Jing Zhou, Zheng-Xu Zhao. The Skin Deformation of a 3D Virtual Human . International Journal of Automation and Computing, 2009, 6(4): 344-350.  doi: 10.1007/s11633-009-0344-8
    [17] Kazuki Kozuka,  Cheng Wan,  Jun Sato. Rectification of 3D Data Obtained from Moving Range Sensor by Using Extended Projective Multiple View Geometry . International Journal of Automation and Computing, 2008, 5(3): 268-275.  doi: 10.1007/s11633-008-0268-8
    [18] Edmée Amstutz, Tomoaki Teshima, Makoto Kimura, Masaaki Mochimaru, Hideo Saito. PCA-based 3D Shape Reconstruction of Human Foot Using Multiple Viewpoint Cameras . International Journal of Automation and Computing, 2008, 5(3): 217-225.  doi: 10.1007/s11633-008-0217-6
    [19] Ming-Min Zhang,  Zhi-Geng Pan,  Li-Feng Ren,  Peng Wang. Image-based Virtual Exhibit and Its Extension to 3D . International Journal of Automation and Computing, 2007, 4(1): 18-24.  doi: 10.1007/s11633-007-0018-3
    [20] Jindong Liu,  Huosheng Hu. A 3D Simulator for Autonomous Robotic Fish . International Journal of Automation and Computing, 2004, 1(1): 42-50.  doi: 10.1007/s11633-004-0042-5
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (4134) PDF downloads (1560) Citations (0)

Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction

Fund Project:

This work was supported by National Natural Science Foundation of China (No. 61462046), Jiangxi Province Education Department of Science and Technology (Nos.GJJ13539, GJJ12465, GJJ13553, GJJ14558 and GJJ14559), Jiangxi Province Science and Technology (No. 20123BBE50076), and Jinggangshan University Doctoral Scientific Research Foundation (No. 20111101).

Abstract: This paper puts forward a method for abdomen panorama reconstruction based on a stereo vision system. For the purpose of recovering the abdomen completely and accurately under the condition of actual photographing with illumination variance and blur noise, some innovative combined feature descriptors are presented on the basis of Hu-moment invariants. Furthermore, considering the study on the abdomen surface reconstruction, a circle template which is divided into 6 sectors is designed. It is noted that a descriptor merely using gray intensity is not able to provide sufficient information for feature description. Consequently, the sector entropy which denotes the structure characteristics is drawn into the feature descriptor. By means of the combined effect of the gray intensity and the sector entropy, the similarity measurement is conducted for the final abdomen reconstruction. The experimental results reveal that the proposed method can acquire a high precision of abdomen reconstruction similar to the 3D scanner. This stereo vision system has wide practicability in the field of clothing.

Huan Liu, Ying Xiao, Wei-Dong Tang and Yan-Hui Zhou. Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction. International Journal of Automation and Computing, vol. 11, no. 5, pp. 469-479, 2014. doi: 10.1007/s11633-014-0829-y
Citation: Huan Liu, Ying Xiao, Wei-Dong Tang and Yan-Hui Zhou. Illumination-robust and Anti-blur Feature Descriptors for Image Matching in Abdomen Reconstruction. International Journal of Automation and Computing, vol. 11, no. 5, pp. 469-479, 2014. doi: 10.1007/s11633-014-0829-y
Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return