Volume 11 Number 6
December 2014
Article Contents
Teerawat Sangpet, Suwat Kuntanapreeda and Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications. International Journal of Automation and Computing, vol. 11, no. 6, pp. 627-634, 2014. doi: 10.1007/s11633-014-0817-2
Cite as: Teerawat Sangpet, Suwat Kuntanapreeda and Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications. International Journal of Automation and Computing, vol. 11, no. 6, pp. 627-634, 2014. doi: 10.1007/s11633-014-0817-2

Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications

  • Received: 2013-02-15
Fund Project:

This work was supported by Royal Golden Jubilee Ph. D. Program of the Thai Research Fund.

  • Piezoelectric actuators fundamentally possess hysteresis behavior. Estimation of the hysteresis is usually demanded for enhancing the performance of piezo-actuated systems. This paper presents an observer-based scheme to estimate the hysteresis in piezo—actuated flexible beams. The observer is based on a nonlinearity observer method. The discrete-time Kalman-filter algorithm is adopted for determination of the observer gains. The major advantages of the presented scheme include ease of implementation and robustness to uncertainty of hysteresis parameters. Simulation results demonstrate that the observer is able to estimate the hysteresis efficiently and has better robustness compared to the previous scheme existing in the literature. The present scheme was also successfully applied to a real-life system. Moreover, a control application example is included to demonstrate the effectiveness of the scheme.
  • [1] J. F. Cuttiono, A. C. Jr. Miller, D. E. Schinstock. Performance optimization of a fast tool servo for single-point diamond turning machines. IEEE/ASME Transactions on Mechatronics, vol. 4, no. 2, pp. 169-179, 1999.
    [2] J. S. Xu, H. Guo. Study on driving and detection of microknife for minimally invasive surgery. In Proceedings of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE, Xiamen, China, pp. 919-923, 2010.
    [3] M. Kögl, M. L. Bucalem. Analysis of smart laminates using piezoelectric MITC plate and shell elements. Computers and Structures, vol. 83, no. 15-16, pp. 1153-1163, 2005.
    [4] H. Bossong, S. Lentzen, R. Schmidt. Experimental investigation and modelling of piezoelectric actuator hystereses for FE analysis of smart structures. Computational Methods and Experimental Measurements XII, C. A. Brebbia, G. M. Carlomagno, Eds., Southampton, UK: WIT Press, pp. 217-226, 2005.
    [5] Y. H. Yu, N. Naganathan, R. Dukkipati. Preisach modeling of hysteresis for piezoceramic actuator system. Mechanism and Machine Theory, vol. 37, no. 1, pp. 49-59, 2002.
    [6] H. Bossong, R. Schmidt, D. Weichert. Numerical modelling of the hysteretic behaviour of piezoactuated structures. Shell Structures, Theory and Applications, W. Pietraszkiewicz, I. Kreja, Eds., London, UK: Taylor & Francis, vol. 2, pp. 283-286, 2010.
    [7] C. A. Jiang, M. C. Deng, A. Inoue. Robust stability of nonlinear plants with a non-symmetric Prandtl-Ishlinskii hysteresis model. International Journal of Automation and Computing, vol. 7, no. 2, pp. 213-218, 2010.
    [8] M. A. Janaideh, P. Krejčí. Prandtl-Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities. Physica B, vol. 407, no. 9, pp. 1365-1367, 2012.
    [9] J. H. Song, A. D. Kiureghian. Generalized Bouc-Wen model for highly asymmetric hysteresis. Journal of Engineering Mechanics, vol. 132, no. 6, pp. 610-618, 2006.
    [10] F. Ikhouane, J. E. Hurtado, J. Rodellar. Variation of the hysteresis loop with the Bouc-Wen model parameters. Nonlinear Dynamics, vol. 48, no. 4, pp. 361-380, 2007.
    [11] M. Chen, C. S. Jiang, Q. X. Wu. Sensor fault diagnosis for a class of time delay uncertain nonlinear systems using neural network. International Journal of Automation and Computing, vol. 5, no. 4, pp. 401-405, 2008.
    [12] K. Mohamed, M. Chadli, M. Chaabane. Unknown inputs observer for a class of nonlinear uncertain systems: An LMI approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 331-336, 2012.
    [13] H. Beikzadeh, H. D. Taghirad. Exponential nonlinear observer based on the differential state-dependent Riccati equation. International Journal of Automation and Computing, vol. 9, no. 4, pp. 358-368, 2012.
    [14] L. Freidovich, A. Robertsson, A. Shiriaev, R. Johansson. LuGre-model-based friction compensation. IEEE Transactions on Control Systems Technology, vol. 18, no. 1, pp. 194-200, 2010.
    [15] L. P. Liu, Z. M. Fu, X. N. Song. Sliding mode control with disturbance observer for a class of nonlinear systems. International Journal of Automation and Computing, vol.9, no. 5, pp. 487-491, 2012.
    [16] R. B. Wiener. Nonlinear compensation for pneumatic actuators with hysteresis-precision control for microlithography. IEEE Control Systems Magazine, vol. 25, no. 6, pp. 32-44, 2005.
    [17] C. Ru, L. Chen, B. Shao, W. Rong, L. Sun. A hysteresis compensation method of piezoelectric actuator: Model, identification and control. Control Engineering Practice, vol. 17, no. 9, pp. 1107-1114, 2009.
    [18] C. J. Lin, S. R. Yang. Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics, vol. 16, no. 1, pp. 417-426, 2006.
    [19] L. Juhász, J. Maas, B. Borovac. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators. Mechatronics, vol. 21, no. 1, pp. 329-338, 2011.
    [20] L. Liu, K. K. Tan, S. L. Chen, S. Huang, T. H. Lee. SVD-based Preisach hysteresis identification and composite control of piezo actuators. ISA Transactions, vol. 51, no. 3, pp. 430-438, 2012.
    [21] P. C. Müller. Estimation and compensation of nonlinearities. In Proceedings of the 1st Asian Control Conference, Tokyo, Japan, vol. II, pp. 641-644, 1994.
    [22] D. Söffker, T. J. Yu, P. C. Müller. State estimation of dynamical systems with nonlinearities by using proportionalintegral observer. International Journal of Systems Science, vol. 26, no. 9, pp. 1571-1582, 1995.
    [23] P. C. Müller. Design of PI-observers and compensators for nonlinear control system. Advances in Mechanics, Dynamics and Control, F. L. Chernousko, G. V. Kostin, V. V. Saurin, Eds., Moscow, Russia: Nauka, pp. 223-231, 2008.
    [24] A. Girija, M. Umapathy, B. Bandyopadhyay, G. Uma, K. Dhanalakshmi. Discrete time sliding mode control for piezoelectric actuated structures. In Proceedings of IEEE International Conference on Industrial Technology, IEEE, Mumbai, India, pp. 1466-1471, 2006.
    [25] F. Heidtmann, I. Krajcin, D. Söffker. Observer-based control and disturbance compensation of elastic mechanical 2D-/3D-structures. In Proceedings of the 2nd International Conference on Dynamics, Vibration, and Control, IEEE, Beijing, China, pp. 23-26, 2006.
    [26] P. Nakkarat, S. Kuntanapreeda. Observer-based backstepping force control of an electrohydraulic actuator. Control Engineering Practice, vol. 17, no. 8, pp. 895-902, 2009.
    [27] S. V. Gosavi, A. G. Kelkar. Passivity-based robust control of piezo-actuated flexible beam. Transactions of ASME, vol. 126, no. 2, pp. 260-271, 2004.
    [28] A. E. Bryson, Y. C. Ho. Applied Optimal Control: Optimization, Estimation, and Control, New York: Hemisphere, 1975.
    [29] R. F. Stengle. Optimal Control and Estimation, New York, USA: Dover, 1994.
    [30] G. F. Franklin, J. D. Powell, M. L. Workman. Digital Control of Dynamic Systems, 3rd ed, New York: Addison- Wesley, 1997.
  • 加载中
  • [1] Maniza Armin, Priyo Nath Roy, Sajal Kumar Das. A Survey on Modelling and Compensation for Hysteresis in High Speed Nanopositioning of AFMs: Observation and Future Recommendation . International Journal of Automation and Computing, 2020, 17(4): 479-501.  doi: 10.1007/s11633-020-1225-4
    [2] Yuan Xu, Tao Shen, Xi-Yuan Chen, Li-Li Bu, Ning Feng. Predictive Adaptive Kalman Filter and Its Application to INS/UWB-integrated Human Localization with Missing UWB-based Measurements . International Journal of Automation and Computing, 2019, 16(5): 604-613.  doi: 10.1007/s11633-018-1157-4
    [3] Derradji Nada, Mounir Bousbia-Salah, Maamar Bettayeb. Multi-sensor Data Fusion for Wheelchair Position Estimation with Unscented Kalman Filter . International Journal of Automation and Computing, 2018, 15(2): 207-217.  doi: 10.1007/s11633-017-1065-z
    [4] Deqing Huang, Jian-Xin Xu, Xin Deng, Venkatakrishnan Venkataramanan, The Cat Tuong Huynh. Differential Evolution Based High-order Peak Filter Design with Application to Compensation of Contact-induced Vibration in HDD Servo Systems . International Journal of Automation and Computing, 2017, 14(1): 45-56.  doi: 10.1007/s11633-016-1034-y
    [5] Mahnaz Hashemi, Javad Askari, Jafar Ghaisari, Marzieh Kamali. Robust Adaptive Actuator Failure Compensation for a Class of Uncertain Nonlinear Systems . International Journal of Automation and Computing, 2017, 14(6): 719-728.  doi: 10.1007/s11633-016-1016-0
    [6] Peng-Cheng Zhang,  De Xu. Tracking and Guiding Multiple Laser Beams for Beam and Target Alignment . International Journal of Automation and Computing, 2015, 12(6): 600-610.  doi: 10.1007/s11633-015-0908-8
    [7] Imen Manaa,  Nabil Barhoumi,  Faouzi Msahli. Global Stability Analysis of Switched Nonlinear Observers . International Journal of Automation and Computing, 2015, 12(4): 432-439.  doi: 10.1007/s11633-014-0855-9
    [8] Jing-Min Gao,  Ke-Bei Zhang,  Fu-Bin Chen,  Hong-Bo Yang. Temperature Characteristics and Error Compensation for Quartz Flexible Accelerometer . International Journal of Automation and Computing, 2015, 12(5): 540-550.  doi: 10.1007/s11633-015-0899-5
    [9] Fan Zhou,  Wei Zheng,  Zeng-Fu Wang. Adaptive Noise Identification in Vision-assisted Motion Estimation for Unmanned Aerial Vehicles . International Journal of Automation and Computing, 2015, 12(4): 413-420.  doi: 10.1007/s11633-014-0857-7
    [10] Jinya Su,  Baibing Li,  Wen-Hua Chen. Recursive Filter with Partial Knowledge on Inputs and Outputs . International Journal of Automation and Computing, 2015, 12(1): 35-42.  doi: 10.1007/s11633-014-0864-8
    [11] Belgacem Jaballah,  Nacer Kouider. Structured Estimation of Tire Forces and the Ground Slope Using SM Observers . International Journal of Automation and Computing, 2014, 11(2): 197-204.  doi: 10.1007/s11633-014-0781-x
    [12] Ping Liu, Zhen-Yan Wang, Zhen Zhang, Jian-Qin Mao, Ke-Min Zhou. Modeling and H Robust Control of a Smart Structure with Rate-dependent Hysteresis Nonlinearity . International Journal of Automation and Computing, 2014, 11(1): 51-58.  doi: 10.1007/s11633-014-0765-x
    [13] Jun Wang, Hai-Long Pei, Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure . International Journal of Automation and Computing, 2013, 10(5): 463-471.  doi: 10.1007/s11633-013-0743-8
    [14] Xiao-Yong Mei, Yi-Yan Fan, Chang-Qin Huang, Ai-Jun Jiang, Shi-Xian Li. An Aggregation Composition Compensation Method Based on Paired Net . International Journal of Automation and Computing, 2012, 9(5): 530-538.  doi: 10.1007/s11633-012-0676-7
    [15] Observer Design for Systems with Time-delayed States . International Journal of Automation and Computing, 2012, 9(1): 105-107.  doi: 10.1007/s11633-012-0622-8
    [16] Li-Jie Zhao,  Chang-Ping Tang,  Peng Gong. Correlation of Direct Piezoelectric Effect on EAPap under Ambient Factors . International Journal of Automation and Computing, 2010, 7(3): 324-329.  doi: 10.1007/s11633-010-0510-z
    [17] Lin-Na Zhou, Chun-Yu Yang, Qing-Ling Zhang. Observers for Descriptor Systems with Slope-restricted Nonlinearities . International Journal of Automation and Computing, 2010, 7(4): 472-478.  doi: 10.1007/s11633-010-0529-1
    [18] Chang-An Jiang,  Ming-Cong Deng,  Akira Inoue. Robust Stability of Nonlinear Plants with a Non-symmetric Prandtl-Ishlinskii Hysteresis Model . International Journal of Automation and Computing, 2010, 7(2): 213-218.  doi: 10.1007/s11633-010-0213-5
    [19] Qi-Cong Wang,  Yuan-Hao Gong,  Chen-Hui Yang,  Cui-Hua Li. Robust Object Tracking under Appearance Change Conditions . International Journal of Automation and Computing, 2010, 7(1): 31-38.  doi: 10.1007/s11633-010-0031-9
    [20] Bao-Feng Wang,  Ge Guo. Kalman Filtering with Partial Markovian Packet Losses . International Journal of Automation and Computing, 2009, 6(4): 395-400.  doi: 10.1007/s11633-009-0395-x
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (4432) PDF downloads (2877) Citations (0)

Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications

Fund Project:

This work was supported by Royal Golden Jubilee Ph. D. Program of the Thai Research Fund.

Abstract: Piezoelectric actuators fundamentally possess hysteresis behavior. Estimation of the hysteresis is usually demanded for enhancing the performance of piezo-actuated systems. This paper presents an observer-based scheme to estimate the hysteresis in piezo—actuated flexible beams. The observer is based on a nonlinearity observer method. The discrete-time Kalman-filter algorithm is adopted for determination of the observer gains. The major advantages of the presented scheme include ease of implementation and robustness to uncertainty of hysteresis parameters. Simulation results demonstrate that the observer is able to estimate the hysteresis efficiently and has better robustness compared to the previous scheme existing in the literature. The present scheme was also successfully applied to a real-life system. Moreover, a control application example is included to demonstrate the effectiveness of the scheme.

Teerawat Sangpet, Suwat Kuntanapreeda and Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications. International Journal of Automation and Computing, vol. 11, no. 6, pp. 627-634, 2014. doi: 10.1007/s11633-014-0817-2
Citation: Teerawat Sangpet, Suwat Kuntanapreeda and Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications. International Journal of Automation and Computing, vol. 11, no. 6, pp. 627-634, 2014. doi: 10.1007/s11633-014-0817-2
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return