Bai-Shun Liu, Xiang-Qian Luo and Jian-Hui Li. General Convex Integral Control. International Journal of Automation and Computing, vol. 11, no. 5, pp. 565-570, 2014. https://doi.org/10.1007/s11633-014-0813-6
Citation: Bai-Shun Liu, Xiang-Qian Luo and Jian-Hui Li. General Convex Integral Control. International Journal of Automation and Computing, vol. 11, no. 5, pp. 565-570, 2014. https://doi.org/10.1007/s11633-014-0813-6

General Convex Integral Control

doi: 10.1007/s11633-014-0813-6
  • Received Date: 2013-08-31
  • Rev Recd Date: 2013-11-21
  • Publish Date: 2014-10-01
  • In this paper, a fire-new general integral control, named general convex integral control, is proposed. It is derived by defining a nonlinear function set to form the integral control action and educe a new convex function gain integrator, introducing the partial derivative of Lyapunov function into the integrator and resorting to a general strategy to transform ordinary control into general integral control. By using Lyapunov method along with the LaSalle s invariance principle, the theorem to ensure regionally as well as semi-globally asymptotic stability is established only by some bounded information. Moreover, the lemma to ensure the integrator output to be bounded in the time domain is proposed. The highlight point of this integral control strategy is that the integral control action seems to be infinity, but it factually is finite in the time domain. Therefore, a simple and ingenious method to design the general integral control is founded. Simulation results showed that under the normal and perturbed cases, the optimum response in the whole control domain of interest can all be achieved by a set of control gains, even under the case that the payload is changed abruptly.

     

  • loading
  • [1]
    H. K. Khalil. Universal integral controllers for minimumphasenonlinear systems. IEEE Transactions on AutomaticControl, vol. 45, no. 3, pp. 490-494, 2000.
    [2]
    N. J. Krikelis, S. K. Barkas. Design of tracking systemssubject to actuator saturation and integrator windup. InternationalJournal of Control, vol. 39, no. 4, pp. 667-682,1984.
    [3]
    R. Hanus, M. Kinnaert, J. L. Henrotte. Conditioning technique,a general anti-windup and bumpless transfer method.Automatica, vol. 23, no. 6, pp. 729-739, 1987.
    [4]
    Y. B. Peng, D. Varanceic, R. Hanus. Anti-windup, bumpless,and conditioned transfer techniques for PID controllers.IEEE Control Systems Magazine, vol. 16, pp. 48-57, 1996.
    [5]
    Y. Y. Cao, Z. L. Lin, G. W. David. Anti-windup design ofoutput tracking systems subject to actuator saturation andconstant disturbances. Automatica, vol. 40, no. 7, pp. 1221-1228, 2004.
    [6]
    N. Marchand, A. Hably. Global stabilization of multipleintegrators with bounded controls. Automatica, vol. 41,no. 12, pp. 2147-2152, 2005.
    [7]
    S. Seshagiri, H. K. Khalil. Robust output feedback regulationof minimum-phase nonlinear systems using conditionalintegrators. Automatica, vol. 41, no. 1, pp. 43-54, 2005.
    [8]
    K. Johanastrom, L. Rundquist. Integrator windup and howto avoid it. In Proceedings of the American Control Conference,IEEE, Pittsburgh, USA, pp. 1693-1698, 1989.
    [9]
    S. M. Shahruz, A. L. Schwartz. Design and optimal tuningof nonlinear PI compensators. Journal of OptimizationTheory and Applications, vol. 83, no. 1, pp. 181-198, 1994.
    [10]
    A. S. Hodel, C. E. Hall. Variable-structure PID control toprevent integrator windup. IEEE Transactions on IndustrialElectronics, vol. 48, pp. 442-451, 2001.
    [11]
    S. M. Shahruz, A. L. Schwartz. Nonlinear PI compensatorsthat achieve high performance. Journal of Dynamic Systems,Measurement and Control, vol. 119, no. 1, pp. 105-110, 1997.
    [12]
    R. Kelly. Global positioning of robot manipulators via PDcontrol plus a class of nonlinear integral actions. IEEETransactions on Automatic Control, vol. 43, no. 7, pp. 934-938, 1998.
    [13]
    S. Tarbouriech, C. Pittet, C. Burgat. Output tracking problemfor systems with input saturations via nonlinear integratingactions. International Journal of Robust and NonlinearControl, vol. 10, no. 6, pp. 489-512, 2000.
    [14]
    B. G. Hu. A study on nnonlinear PID controllers—proportional component approach. Acta Automatica Sinica,vol. 32, pp. 219-227, 2006.
    [15]
    C. Q. Huang, X. F. Peng, J. P. Wang. Robust nonlinearPID controllers for anti-windup design of robot manipulatorswith an uncertain Jacobian matrix. Acta AutomaticaSinica, vol. 34, no. 9, pp. 1113-1121, 2008.
    [16]
    B. S. Liu, B. L. Tian. General integral control. In Proceedingsof the International Conference on Advanced ComputerControl, IEEE, Singapore, pp. 138-143, 2009.
    [17]
    B. S. Liu, B. L. Tian. General integral control design basedon linear system theory. In Proceedings of the 3rd InternationalConference on Mechanic Automation and ControlEngineering, IEEE, Washington DC, USA, pp. 1958-1961,2012.
    [18]
    B. S. Liu, B. L. Tian. General integral control design basedon sliding mode technique. In Proceedings of the 3rd InternationalConference on Mechanic Automation and ControlEngineering, IEEE, Washington DC, USA, pp. 3244-3247,2012.
    [19]
    B. S. Liu, J. H. Li, X. Q. Luo. General integral controldesign via feedback linearization. Intelligent Control andAutomation, vol. 5, no. 1, pp. 19-23, 2014.
    [20]
    B. S. Liu, X. Q. Luo, J. H. Li. General concave integralcontrol. Intelligent Control and Automation, vol. 4, no. 4,pp. 356-361, 2013.
    [21]
    H. K. Khalil. Nonlinear Systems, Beijing: Electronics IndustryPublishing, 3rd ed., pp. 126-128, 482-484, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4619) PDF downloads(1765) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return