Volume 11 Number 3
June 2014
Article Contents
Basant Kumar Sahu and Bidyadhar Subudhi. Adaptive Tracking Control of an Autonomous Underwater Vehicle. International Journal of Automation and Computing, vol. 11, no. 3, pp. 299-307, 2014. doi: 10.1007/s11633-014-0792-7
Cite as: Basant Kumar Sahu and Bidyadhar Subudhi. Adaptive Tracking Control of an Autonomous Underwater Vehicle. International Journal of Automation and Computing, vol. 11, no. 3, pp. 299-307, 2014. doi: 10.1007/s11633-014-0792-7

Adaptive Tracking Control of an Autonomous Underwater Vehicle

  • Received: 2013-06-16
Fund Project:

This work was supported by Naval Research Board, Defense Re-search Development Organization (DRDO), Government of India (No.DNRD/05/4003/NRB/160).

  • This paper presents the trajectory tracking control of an autonomous underwater vehicle (AUV). To cope with parametric uncertainties owing to the hydrodynamic effect, an adaptive control law is developed for the AUV to track the desired trajectory. This desired state-dependent regressor matrix-based controller provides consistent results under hydrodynamic parametric uncertainties. Stability of the developed controller is verified using the Lyapunov's direct method. Numerical simulations are carried out to study the efficacy of the proposed adaptive controller.
  • [1] D. J. Stilwell, B. E. Bishop. Platoons of underwater vehicles. IEEE Control Systems Magazine, vol. 20, no. 6, pp. 45-52, 2000.
    [2] R. W. Beard, J. Lawton, F. Y. Hadaegh. A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology, vol. 9, no. 6, pp. 777-790, 2001.
    [3] D. P. Scharf, F. Y. Hadaegh, S. R. Ploen. A survey of spacecraft formation flying guidance and control (Part Ⅰ): Guidance. In Proceedings of 2003 American Control Conference, IEEE, Denver, Colorado, USA, vol. 2, pp. 1733-1739, 2003.
    [4] Y. S. Kim, J. Lee, S. K. Park, B. H. Jeon, P. M. Lee. Path tracking control for underactuated AUVs based on resolved motion acceleration control. In Proceedings of the 4th International Conference on Autonomous Robots and Agents, IEEE, Wellington, New Zealand, pp. 342-346, 2009.
    [5] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, G. S. Sukhatme. Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. International Journal of Robotics Research, vol. 29, no. 12, pp. 1475-1479, 2010.
    [6] B. Garau, M. Bonet, A. Álvarez, S. Ruiz, A. Pascual. Path planning for autonomous underwater vehicles in realistic oceanic current fields: Application to gliders in the western Mediterranean sea. Journal of Maritime Research, vol. 6, no. 2, pp. 5-21, 2009.
    [7] D. Kruger, R. Stolkin, A. Blum, J. Briganti. Optimal AUV path planning for extended missions in complex, fastflowing estuarine environments. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp. 4265-4270, 2007.
    [8] D. Kruger, R. Stolkin, A. Blum, J. Briganti. Optimal AUV path planning for extended missions in complex, fastflowing estuarine environments. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Rome, Italy, pp. 4265-4270, 2007.
    [9] J. Ghommam, O. Calvo, A. Rozenfeld. Coordinated path following for multiple underactuated AUVs. In Proceedings of OCEANS MTS/IEEE Kobe Techno-Ocean, IEEE, Kobe, Japan, pp. 1-7, 2008.
    [10] H. Bo, R. Hongge, Y. Ke, H. Luyue, R. Chunyun. Path planning and tracking for autonomous underwater vehicles. In Proceedings of IEEE International Conference on Information and Automation, IEEE, Zhuhai/Macau, China, pp. 728-733, 2009.
    [11] D. P. Williams. On optimal AUV track-spacing for underwater mine detection. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Alaska, USA, pp. 4755-4762, 2010.
    [12] Y. Zhao, D. Zhu. A bio-inspired kinematic model of AUV tracking control for ocean current. In Proceedings of IEEE International Conference on Computer Science and Automation Engineering (CSAE), IEEE, Shanghai, China, pp. 478-482, 2011.
    [13] X. B. Xiang, L. Lapierre, C. Liu, B. Jouvencel. Path tracking: Combined path following and trajectory tracking for autonomous underwater vehicles. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, San Francisco, USA, pp. 3558-3563, 2011.
    [14] F. Repoulias, E. Papadopoulos. Planar trajectory planning and tracking control design for underactuated AUVs. Ocean Engineering, vol. 34, no. 11-12, pp. 1650-1667, 2007.
    [15] N. Sadegh, R. Horowitz. Stability and robustness analysis of a class of adaptive controllers for robotic manipulators. International Journal of Robotics Research, vol. 9, no. 3, pp. 74-92, 1990.
    [16] O. Mohareri, R. Dhaouadi, A. B. Rad. Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing, vol. 88, pp. 54-66, 2012.
    [17] D. Chwa. Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE Transactions on Fuzzy Systems, vol. 20, no. 3, pp. 587-593, 2012.
    [18] F. Yang, C. L. Wang. Adaptive tracking control for uncertain dynamic nonholonomic mobile robots based on visual servoing. Journal of Control Theory and Applications, vol. 10, no. 1, pp. 56-63, 2012.
    [19] L. Wang, H. M. Jia, L. J. Zhang, H. B. Wang. Horizontal tracking control for AUV based on nonlinear sliding mode. In Proceedings of IEEE International Conference on Information and Automation (ICIA), IEEE, Shenyang, China, pp. 460-463, 2012.
    [20] B. B. Miao, T. S. Li, W. L. Luo. A DSC and MLP based robust adaptive NN tracking control for underwater vehicle. Neurocomputing, vol. 111, pp. 184-189, 2013.
    [21] F. D. Gao, C. Y. Pan, Y. Y. Han, X. Zhang. Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions. Journal of Central South University, vol. 19, no. 7, pp. 1859-1868, 2012.
    [22] X. Q. Bian, J. J. Zhou, Z. P. Yan, H. N. Jia. Adaptive neural network control system of path following for AUVs. In Proceedings of the Southeastcon, IEEE, Orlando, FL, USA, pp. 1-5, 2012.
    [23] B. Subudhi, K. Mukherjee, S. Ghosh. A static output feedback control design for path following of autonomous underwater vehicle in vertical plane. Ocean Engineering, vol. 63, pp. 72-76, 2013.
    [24] W. Zhang, D. Xu, M. L. Tan, C. L.Wang, Z. P. Yan. Trajectory tracking control of underactuated UUV for underwater recovery. In Proceedings of the 2nd International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), IEEE, Harbin, China, pp. 386-391, 2012.
    [25] W. Caharija, K. Y. Pettersen, J. T. Gravdahl, E. Borhaug. Path following of underactuated autonomous underwater vehicles in the presence of ocean currents. In Proceedings of the 51st IEEE Conference on Decision and Control (CDC), IEEE, Maui, HI, USA, pp. 528-535, 2012.
    [26] Z. H. Ismail, B. M. Mokhar, M. W. Dunnigan. Tracking control for an autonomous underwater vehicle based on multiplicative potential energy function. In Proceedings of IEEE OCEANS, IEEE, Yeosu, Korea, pp. 1-6, 2012.
    [27] X. G. Xia, Y. Ying, Z. W. Guang. Path-following in 3D for underactuated AUV in the presence of ocean current. In Proceedings of the 5th IEEE International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE, Hong Kong, China, Korea, pp. 788-791, 2013.
    [28] T. D. Zhang, L. Wan, W. J. Zeng, Y. R. Xu. Object detection and tracking method of AUV based on acoustic vision. China Ocean Engineering, vol. 26, no. 4, pp. 623-636, 2012.
    [29] L. Lapierre, B. Jouvencel. Robust nonlinear path-following control of an AUV. IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 89-102, 2008.
    [30] T. I. Fossen. Guidance and Control of Ocean Vehicles, New York: John Wiley & Sons, 1994.
    [31] J. J. E. Slotine, W. Li. Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [32] A. C. Huang, M. C. Chien. Adaptive Control of Robot Manipulators: A Unified Regressor-free Approach, Singapore: World Scientific Publishing Company, 2010.
  • 加载中
  • [1] Younes Solgi, Alireza Fatehi, Ala Shariati. Novel Non-monotonic Lyapunov-Krasovskii Based Stability Analysis and Stabilization of Discrete State-delay System . International Journal of Automation and Computing, 2020, 17(5): 713-732.  doi: 10.1007/s11633-020-1222-7
    [2] Madhusmita Panda, Bikramaditya Das, Bidyadhar Subudhi, Bibhuti Bhusan Pati. A Comprehensive Review of Path Planning Algorithms for Autonomous Underwater Vehicles . International Journal of Automation and Computing, 2020, 17(3): 321-352.  doi: 10.1007/s11633-019-1204-9
    [3] Basant Kumar Sahu, Bidyadhar Subudhi, Madan Mohan Gupta. Stability Analysis of an Underactuated Autonomous Underwater Vehicle Using Extended-Routh's Stability Method . International Journal of Automation and Computing, 2018, 15(3): 299-309.  doi: 10.1007/s11633-016-0992-4
    [4] Bikramaditya Das, Bidyadhar Subudhi, Bibhuti Bhusan Pati. Cooperative Formation Control of Autonomous Underwater Vehicles: An Overview . International Journal of Automation and Computing, 2016, 13(3): 199-225.  doi: 10.1007/s11633-016-1004-4
    [5] Qing-Chun Li,  Wen-Sheng Zhang,  Gang Han,  Ying-Hua Zhang. Finite Time Convergent Wavelet Neural Network Sliding Mode Control Guidance Law with Impact Angle Constraint . International Journal of Automation and Computing, 2015, 12(6): 588-599.  doi: 10.1007/s11633-015-0927-5
    [6] Guo-Chen Pang,  Kan-Jian Zhang. Stability of Time-delay System with Time-varying Uncertainties via Homogeneous Polynomial Lyapunov-Krasovskii Functions . International Journal of Automation and Computing, 2015, 12(6): 657-663.  doi: 10.1007/s11633-015-0940-8
    [7] Esmat Sadat Alaviyan Shahri,  Saeed Balochian. Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization . International Journal of Automation and Computing, 2015, 12(4): 440-447.  doi: 10.1007/s11633-014-0856-8
    [8] Ju-Ping Gu,  Liang Hua,  Xiao Wu,  Hui Yang,  Zhen-Tao Zhou. Color Medical Image Enhancement Based on Adaptive Equalization of Intensity Numbers Matrix Histogram . International Journal of Automation and Computing, 2015, 12(5): 551-558.  doi: 10.1007/s11633-014-0871-9
    [9] Efficient Iterative Solutions to General Coupled Matrix Equations . International Journal of Automation and Computing, 2013, 10(5): 481-486.  doi: 10.1007/s11633-013-0745-6
    [10] Fatima Ahmida, El Houssaine Tissir. Exponential Stability of Uncertain T-S Fuzzy Switched Systems with Time Delay . International Journal of Automation and Computing, 2013, 10(1): 32-38.  doi: 10.1007/s11633-013-0693-1
    [11] Modeling and Adaptive Sliding Mode Control of the Catastrophic Course of a High-speed Underwater Vehicle . International Journal of Automation and Computing, 2013, 10(3): 210-216.  doi: 10.1007/s11633-013-0714-0
    [12] Huan-Yin Zhou, Kai-Zhou Liu, Xi-Sheng Feng. State Feedback Sliding Mode Control without Chattering by Constructing Hurwitz Matrix for AUV Movement . International Journal of Automation and Computing, 2011, 8(2): 262-268.  doi: 10.1007/s11633-011-0581-5
    [13] Ting-Kai Wang,  Quan Dang,  Pei-Yuan Pan. Path Planning Approach in Unknown Environment . International Journal of Automation and Computing, 2010, 7(3): 310-316.  doi: 10.1007/s11633-010-0508-6
    [14] Yu-Peng Qiao, Hong-Sheng Qi, Dai-Zhan Cheng. Parameterized Solution to a Class of Sylvester Matrix Equations . International Journal of Automation and Computing, 2010, 7(4): 479-483.  doi: 10.1007/s11633-010-0530-8
    [15] Zhi-Le Xia, Jun-Min Li. GH2 Control for Uncertain Discrete-time-delay Fuzzy Systems Based on a Switching Fuzzy Model and Piecewise Lyapunov Function . International Journal of Automation and Computing, 2009, 6(3): 261-266.  doi: 10.1007/s11633-009-0261-x
    [16] Jin-Zhao Lin, Xian Zhou, Yun Li. A Minimum-energy Path-preserving Topology Control Algorithm for Wireless Sensor Networks . International Journal of Automation and Computing, 2009, 6(3): 295-300.  doi: 10.1007/s11633-009-0295-0
    [17] Da-Zhong Wang,  Shu-Jing Wu,  Shigenori Okubo. State Predictive Model Following Control System for Linear Time Delays . International Journal of Automation and Computing, 2009, 6(2): 186-191.  doi: 10.1007/s11633-009-0186-4
    [18] Jiang-Tao Cao, Hong-Hai Liu, Ping Li, David J. Brown, Georgi Dimirovski. A Study of Electric Vehicle Suspension Control System Based on an Improved Half-vehicle Model . International Journal of Automation and Computing, 2007, 4(3): 236-242.  doi: 10.1007/s11633-007-0236-8
    [19] Hui Yu,  Yong-Ji Wang. Stable Flocking Motion of Mobile Agents Following a Leader in Fixed and Switching Networks . International Journal of Automation and Computing, 2006, 3(1): 8-16.  doi: 10.1007/s11633-006-0008-x
    [20] Xian-Ku Zhang,  Yi-Cheng Jin. Transfigured Loop Shaping Controller and its Application to Underwater Vehicle . International Journal of Automation and Computing, 2005, 2(1): 48-51.  doi: 10.1007/s11633-005-0048-7
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (7686) PDF downloads (4347) Citations (0)

Adaptive Tracking Control of an Autonomous Underwater Vehicle

Fund Project:

This work was supported by Naval Research Board, Defense Re-search Development Organization (DRDO), Government of India (No.DNRD/05/4003/NRB/160).

Abstract: This paper presents the trajectory tracking control of an autonomous underwater vehicle (AUV). To cope with parametric uncertainties owing to the hydrodynamic effect, an adaptive control law is developed for the AUV to track the desired trajectory. This desired state-dependent regressor matrix-based controller provides consistent results under hydrodynamic parametric uncertainties. Stability of the developed controller is verified using the Lyapunov's direct method. Numerical simulations are carried out to study the efficacy of the proposed adaptive controller.

Basant Kumar Sahu and Bidyadhar Subudhi. Adaptive Tracking Control of an Autonomous Underwater Vehicle. International Journal of Automation and Computing, vol. 11, no. 3, pp. 299-307, 2014. doi: 10.1007/s11633-014-0792-7
Citation: Basant Kumar Sahu and Bidyadhar Subudhi. Adaptive Tracking Control of an Autonomous Underwater Vehicle. International Journal of Automation and Computing, vol. 11, no. 3, pp. 299-307, 2014. doi: 10.1007/s11633-014-0792-7
Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return