Volume 10 Number 4
August 2013
Article Contents
Yue-Hui Zhao and Jin-Liang Wang. Exponential Synchronization of Impulsive Complex Networks with Output Coupling. International Journal of Automation and Computing, vol. 10, no. 4, pp. 350-359, 2013. doi: 10.1007/s11633-013-0731-z
Cite as: Yue-Hui Zhao and Jin-Liang Wang. Exponential Synchronization of Impulsive Complex Networks with Output Coupling. International Journal of Automation and Computing, vol. 10, no. 4, pp. 350-359, 2013. doi: 10.1007/s11633-013-0731-z

Exponential Synchronization of Impulsive Complex Networks with Output Coupling

Author Biography:
  • Jin-Liang Wang received the M. Sc. degree in applied mathematics from Department of Mathematics, Chongqing Normal University, China in 2010. Currently, he is a Ph. D. candidate at School of Automation Science and Electrical Engineering, Beihang University, China. He serves as a reviewer for several journals. He is the recipient of 2011 Excellent Master Degree Thesis Award of Chongqing City. His research interests include complex networks, multi-agent systems, distributed parameter systems, impulsive control systems. E-mail: wangjinliang1984@tom.com

  • Corresponding author: Yue-Hui Zhao
  • Received: 2012-06-08
Fund Project:

This work was supported by Key Project of Chinese Education Ministry (No. 212138), Natural Science Foundation of Chongqing (No.CQ CSTC 2011BB0117), Foundation of Science and Technology Project of Chongqing Education Commission (No.KJ120630), Innovation Foundation of BUAA for PhD Graduates (No.YWF-12-RBYJ-005).

  • This paper proposes a new impulsive complex delayed dynamical network model with output coupling, which is totally different from some existing network models. Then, by employing impulsive delay differential inequalities, some sufficient conditions are obtained to guarantee the global exponential state synchronization and output synchronization of the impulsive complex delayed dynamical network. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.
  • 加载中
  • [1] J. L. Wang, Z. C. Yang, H. N. Wu, Passivity analysis ofcomplex dynamical networks with multiple time-varying de-lays, Journal of Engineering Mathematics, 74 (2012) 175-188.
    [2] J. L. Wang, H. N. Wu, Z. C. Yang, Passivity analysis of im-pulsive complex networksInternational Journal of Automa-tion and Computing, 8 (2011) 484-489.
    [3] J. L. Wang, Z. C. Yang, T. W. Huang, M. Q. Xiao, Syn-chronization criteria in complex dynamical networks withnonsymmetric coupling and multiple time-varying delays,Applicable Analysis, 91 (2012) 923-935.
    [4] J. L. Wang, Z. C. Yang, T. W. Huang, M. Q. Xiao, Localand global exponential synchronization of complex delayed dynamical networks with general topology, Discrete andContinuous Dynamical Systems-Series B, 16 (2011) 393-408.
    [5] J. L. Wang, H. N. Wu, Stability analysis of impulsiveparabolic complex networks, Chaos, Solitons & Fractals,44 (2011) 1020-1034.
    [6] J. L. Wang, H. N. Wu, Synchronization criteria for impul-sive complex dynamical networks with time-varying delay,Nonlinear Dynamics, 70 (2012) 13-24.
    [7] Y. Dai, Y.Z. Cai, X.M. Xu. Synchronization and exponen-tial estimates of complex networks with mixed time-varyingcoupling delays, International Journal of Automation andComputing, 6 (2009) 301-307.
    [8] W. W. Yu, J. D. Cao, J. H. L?u, Global synchronization oflinearly hybrid coupled networks with time-varying delay,SIAM J. Appl. Dynamical Syst., 7 (2008) 108-133.
    [9] J. Q. Lu, J. Kurths, J. D. Cao, N. Mahdavi, C. Huang,Synchronization control for nonlinear stochastic dynamicalnetworks: pinning impulsive strategy, IEEE Transactionson Neural Networks and Learning Systems, 23 (2012) 285-292.
    [10] J. Q. Lu, D. W. C. Ho, J. D. Cao, J. Kurths, Exponentialsynchronization of linearly coupled neural networks withimpulsive disturbances, IEEE Transactions on Neural Net-works, 22 (2011) 329-336.
    [11] C. G. Li, G. R. Chen, Synchronization in general complexdynamical networks with coupling delays, Physica A, 343(2004) 263-278.
    [12] L. Y. Xiang, Z. Q. Chen, Z. X. Liu, F. Chen, Z. Z. Yuan,Pinning control of complex dynamical networks with het-erogeneous delays, Comput. Math. Appl., 56 (2008) 1423-1433.
    [13] Q. Y. Wang, Z. S. Duan, G. R. Chen, Z. S. Feng, Syn-chronization in a class of weighted complex networks withcoupling delays, Physica A, 387 (2008) 5616-5622.
    [14] Q. J. Zhang, J. A, Lu, J. H. L?u, C. K. Tse, Adaptive feed-back synchronization of a general complex dynamical net-work with delayed nodes, IEEE Trans. Circuits Syst. II,Exp. Briefs, 55 (2008) 183-187.
    [15] X. Q. Wu, Synchronization-based topology identification ofweighted general complex dynamical networks with time-varying coupling delay, Physica A, 387 (2008) 997-1008.
    [16] L. Wang , H. P. Dai, H. Dong, Y. H. Shen, Y. X. Sun,Adaptive synchronization of weighted complex dynamicalnetworks with coupling time-varying delays, Phys. Lett. A,372 (2008) 3632-3639.
    [17] S. M. Cai, J. Zhou, L. Xiang, Z. Liu, Robust impulsive syn-chronization of complex delayed dynamical networks, Phys.Lett. A, 372 (2008) 4990-4995.
    [18] L. Y. Xiang, Z. X. Liu, Z. Q. Chen, Z. Z. Yuan, Pinningweighted complex networks with heterogeneous delays by asmall number of feedback controllers, Sci. China, Ser. F, 51(2008) 511-523.
    [19] K. Li, C. H. Lai, Adaptive-impulsive synchronization of un-certain complex dynamical networks, Phys. Lett. A, 372(2008) 1601-1606.
    [20] W. W. Lin, Y. Q.Wang, Chaotic synchronization in coupledmap lattices with periodic boundary conditions, SIAM J.Appl. Dynamical Syst., 1 (2002) 175-189.
    [21] J. Zhou, J. A. Lu, J. H. L?u, Pinning adaptive synchroniza-tion of a general complex dynamical network, Automatica,44 (2008) 996-1003.
    [22] Z. Li, L. C. Jiao, J. J. Lee, Robust adaptive global syn-chronization of complex dynamical networks by adjustingtime-varying coupling strength, Physica A, 387 (2008) 1369-1380.
    [23] P. L. Lu, Y. Yang, L. Huang, Synchronization of linearlycoupled networks of deterministic ratchets, Phys. Lett. A,372 (2008) 3978-3985.
    [24] W. L. Lu, F. M. Atay, J. Jost, Synchronization of discrete-time dynamical networks time-varying coupling, SIAM J.Math. Anal., 39 (2007) 1231-1259.
    [25] S. Wen, S. H. Chen, W. L. Guo, Adaptive global synchro-nization of a general complex dynamical network with non-delayed and delayed coupling, Phys. Lett. A, 372 (2008)6340-6346.
    [26] G. P. Jiang, W. K. S. Tang, G. R. Chen, A state-observer-based approach for synchronization in complex dynamicalnetworks, IEEE Trans. Circuits Syst. I, Reg. Papers, 53(2006) 2739-2745.
    [27] J. L. Wang, H. N. Wu, Local and global exponential outputsynchronization of complex delayed dynamical networks,Nonlinear Dynamics, 67 (2012) 497-504.
    [28] S. J. Long, D. Y. Xu, Delay-dependent stability analysis forimpulsive neural networks with time varying delays, Neu-rocomputing, 71 (2008) 1705-1713.
    [29] Z. C. Yang, D. Y. Xu, Stability analysis and design of im-pulsive control systems with time delay, IEEE Trans. Auto.Contr., 52 (2007) 1448-1454.
    [30] Z. C. Yang, D. Y. Xu, Stability analysis of delay neuralnetworks with impulsive effects, IEEE Trans. Circuits Syst.II, Exp. Briefs, 52 (2005) 517-521.
    [31] Z. C. Yang, D.Y. Xu, Impulsive effects on stability of cohen-grossberg neural networks with variable delays, Appl. Math.Comput., 177 (2006) 63-78.
    [32] H. Zhang, T. Ma, G. B. Huang, Z. Wang, Robust global ex-ponential synchronization of uncertain chaotic delayed neu-ral networks via dual-stage impulsive control, IEEE Trans.Syst., Man, Cybern. B, Cybern., 40 (2010) 831-844.
    [33] J. Zhou, L. Xiang, Z. R. Liu, Synchronization in complexdelayed dynamical networks with impulsive effects, PhysicaA, 384 (2007) 684-692.
    [34] S. Zheng, G. Dong, Q. Bi, Impulsive synchronization ofcomplex networks with non-delayed and delayed coupling,Phys. Lett. A, 373 (2009) 4255-4259.
    [35] Y. Q. Yang, J. D. Cao, Exponential synchronization of thecomplex dynamical networks with a coupling delay and im-pulsive effects, Nonlinear Analysis: Real World Applica-tions, 11 (2010) 1650-1659.
    [36] J. Lu, D. W. C. Ho, J. Cao, A unified synchronization cri-terion for impulsive dynamical networks, Automatica, 46(2010) 1215-1221.
    [37] W. L. Lu, T. P. Chen, New approach to synchronizationanalysis of linearly coupled ordinary differential systems,Physica D, 213 (2006) 214-230.
    [38] W. L. Guo, F. Austin, S. H. Chen, Global synchronizationof nonlinearly coupled complex networks with non-delayedand delayed coupling, Commun Nonlinear Sci Numer Sim-ulat, 15 (2010) 1631-1639.
    [39] V. Kolmanovskii, A. Myshkis, Introduction to the The-ory and Applications of Functional Differential Equations.Kluwer Academic, London, 2000.
    [40] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, The-ory of Impulsive Differential Equations. World Scientific,Singapore, 1989.
  • 加载中
  • [1] Xiu-Li Chai, Zhi-Hua Gan. Function Projective Lag Synchronization of Chaotic Systems with Certain Parameters via Adaptive-impulsive Control . International Journal of Automation and Computing, 2019, 16(2): 238-247.  doi: 10.1007/s11633-016-1020-4
    [2] Hong-Wei Jia, Jun Zhao. Output Regulation of Multiple Heterogeneous Switched Linear Systems . International Journal of Automation and Computing, 2018, 15(4): 492-499.  doi: 10.1007/s11633-017-1058-y
    [3] Cui-Mei Jiang, Shu-Tang Liu, Fang-Fang Zhang. Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems . International Journal of Automation and Computing, 2018, 15(5): 603-615.  doi: 10.1007/s11633-016-0985-3
    [4] Hui-Na Feng,  Jun-Min Li. Distributed Adaptive Synchronization of Complex Dynamical Network with Unknown Time-varying Weights . International Journal of Automation and Computing, 2015, 12(3): 323-329.  doi: 10.1007/s11633-015-0889-7
    [5] Qing-Yu Su,  Yan-Cheng Li,  Xing-Ze Dai,  Jian Li. Fault Detection for a Class of Impulsive Switched Systems . International Journal of Automation and Computing, 2014, 11(2): 223-230.  doi: 10.1007/s11633-014-0784-7
    [6] Bin Wang,  Jun-Yong Zhai,  Shu-Min Fei. Output Feedback Tracking Control for a Class of Switched Nonlinear Systems with Time-varying Delay . International Journal of Automation and Computing, 2014, 11(6): 605-612.  doi: 10.1007/s11633-014-0848-8
    [7] Wan-Li Guo,  Ming-Zhi Mao. Projective Lag Synchronization and Parameter Identification of a New Hyperchaotic System . International Journal of Automation and Computing, 2013, 10(3): 256-259.  doi: 10.1007/s11633-013-0718-9
    [8] Hai-Yi Sun, Ning Li, De-Ping Zhao, Qing-Ling Zhang. Synchronization of Complex Networks with Coupling Delays via Adaptive Pinning Intermittent Control . International Journal of Automation and Computing, 2013, 10(4): 312-318.  doi: 10.1007/s11633-013-0726-9
    [9] Sundarapandian Vaidyanathan, Sivaperumal Sampath. Anti-synchronization of Four-wing Chaotic Systems viaSliding Mode Control . International Journal of Automation and Computing, 2012, 9(3): 274-279.  doi: 10.1007/s11633-012-0644-2
    [10] Chun-Li Zhang,  Jun-Min Li. Hybrid Function Projective Synchronization of Chaotic Systems with Uncertain Time-varying Parameters Fourier Series Expansion . International Journal of Automation and Computing, 2012, 9(4): 388-394.  doi: 10.1007/s11633-012-0659-8
    [11] Chang-Liang Liu, Shao-Cheng Tong, Yong-Ming Li, Yuan-Qing Xia. Adaptive Fuzzy Backstepping Output Feedback Control of Nonlinear Time-delay Systems with Unknown High-frequency Gain Sign . International Journal of Automation and Computing, 2011, 8(1): 14-22.  doi: 10.1007/s11633-010-0549-x
    [12] Jin-Liang Wang, Huai-Ning Wu, Zhi-Chun Yang. Passivity Analysis of Impulsive Complex Networks . International Journal of Automation and Computing, 2011, 8(4): 484-489.  doi: 10.1007/s11633-011-0607-z
    [13] Indirect Adaptive Fuzzy and Impulsive Control of Nonlinear Systems . International Journal of Automation and Computing, 2010, 7(4): 484-491.  doi: 10.1007/s11633-010-0531-7
    [14] Li Sheng,  Hui-Zhong Yang. H Synchronization of Chaotic Systems via Delayed Feedback Control . International Journal of Automation and Computing, 2010, 7(2): 230-235.  doi: 10.1007/s11633-010-0230-4
    [15] Shao-Cheng Tong,  Yong-Ming Li. Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks . International Journal of Automation and Computing, 2009, 6(2): 145-153.  doi: 10.1007/s11633-009-0145-0
    [16] Suchin Arunsawatwong,  Van Quang Nguyen. Design of Retarded Fractional Delay Differential Systems Using the Method of Inequalities . International Journal of Automation and Computing, 2009, 6(1): 22-28.  doi: 10.1007/s11633-009-0022-x
    [17] Yang Dai, YunZe Cai, Xiao-Ming Xu. Synchronization and Exponential Estimates of Complex Networks with Mixed Time-varying Coupling Delays . International Journal of Automation and Computing, 2009, 6(3): 301-307.  doi: 10.1007/s11633-009-0301-6
    [18] Keylan Alimhan,  Hiroshi Inaba. Output Feedback Control for a Class of Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(3): 215-221.  doi: 10.1007/s11633-006-0215-5
    [19] Xin-Zhuang Dong,  Qing-Ling Zhang. Robust Input-Output Energy Decoupling for Uncertain Singular Systems . International Journal of Automation and Computing, 2005, 2(1): 37-42.  doi: 10.1007/s11633-005-0037-x
    [20] Shumei Mu, Tianguang Chu, Long Wang, Wensheng Yu. Output Feedback Control of Networked Systems . International Journal of Automation and Computing, 2004, 1(1): 26-34.  doi: 10.1007/s11633-004-0026-5
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5415) PDF downloads (2203) Citations (0)

Exponential Synchronization of Impulsive Complex Networks with Output Coupling

  • Corresponding author: Yue-Hui Zhao
Fund Project:

This work was supported by Key Project of Chinese Education Ministry (No. 212138), Natural Science Foundation of Chongqing (No.CQ CSTC 2011BB0117), Foundation of Science and Technology Project of Chongqing Education Commission (No.KJ120630), Innovation Foundation of BUAA for PhD Graduates (No.YWF-12-RBYJ-005).

Abstract: This paper proposes a new impulsive complex delayed dynamical network model with output coupling, which is totally different from some existing network models. Then, by employing impulsive delay differential inequalities, some sufficient conditions are obtained to guarantee the global exponential state synchronization and output synchronization of the impulsive complex delayed dynamical network. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.

Yue-Hui Zhao and Jin-Liang Wang. Exponential Synchronization of Impulsive Complex Networks with Output Coupling. International Journal of Automation and Computing, vol. 10, no. 4, pp. 350-359, 2013. doi: 10.1007/s11633-013-0731-z
Citation: Yue-Hui Zhao and Jin-Liang Wang. Exponential Synchronization of Impulsive Complex Networks with Output Coupling. International Journal of Automation and Computing, vol. 10, no. 4, pp. 350-359, 2013. doi: 10.1007/s11633-013-0731-z
Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return