Volume 10 Number 4
August 2013
Article Contents
Ryan Montague and Chris Bingham. Nonlinear Control of Magnetically-geared Drive-trains. International Journal of Automation and Computing, vol. 10, no. 4, pp. 319-326, 2013. doi: 10.1007/s11633-013-0727-8
Cite as: Ryan Montague and Chris Bingham. Nonlinear Control of Magnetically-geared Drive-trains. International Journal of Automation and Computing, vol. 10, no. 4, pp. 319-326, 2013. doi: 10.1007/s11633-013-0727-8

Nonlinear Control of Magnetically-geared Drive-trains

Author Biography:
  • Chris Bingham received the B.Eng. degree in electronic systems and control engineering, from Sheffield City Polytechnic UK in 1989, the M. Sc.(Eng.) degree in control systems engineering, University of Sheffield, UK in 1990, and the Ph.D. degree in control systems to accommodate nonlinear dynamic effects in aerospace flightsurface actuators, Cranfield University, UK in 1994. From 1994 to 2010, he held academic positions at the University of Sheffield, as a researcher and senior lecturer. He now holds the position of professor of energy conversion at the University of Lincoln, UK. His research interests include applied control systems, power electronic converters, electric vehicles, and magnetic gear drive trains. E-mail: c.bingham@lincoln.ac.uk

  • Corresponding author: Ryan Montague
  • Received: 2013-02-13
  • The paper considers certain impedimental issues related to the use of magnetic gearbox and magnetic coupling technologies in high performance servo control systems. A prototype magnetic coupling is used as a basis for demonstrating that the underlying torque transfer characteristic is significantly nonlinear when transmitted torque approaches the maximum designed pull-out torque of the device. It is shown that linear controllers for speed control proportional plus integral (PI) and position control proportional plus derivative (PD) result in acceptable performance provided the magnetic coupling operates below 80% of designed pull-out torque. To fully compensate for the inherent nonlinearity of the torque transfer characteristic, feedback linearizing control laws and state transformations are derived resulting in exactly linear input-output characteristic for position and speed control of magnetically-geared drive-trains. With the addition of state feedback, the closed-loop dynamics for both position and speed control of a magneticallygeared drive-train can be designed to satisfy the integral of time multiplied by absolute error (ITAE) optimized linear response for a step input. Outstanding results are demonstrated through simulation and experimental real-time implementation on a demonstrator magnetically-geared drive-train.
  • 加载中
  • [1] J. Linni, K.T. Chau, Y. Gong, J.Z. Jiang, Y. Chuang, L. Wenlong.Comparison of coaxial magnetic gears with different topologies. IEEETransactions on Magnetics, vol. 45, no. 10, pp. 4526-4529
    [2] J. Rens, K. Atallah, S.D. Calverley, D. Howe. Anovel magnetic harmonic gear. IEEE Transactions on IndustryApplications, vol. 46, no. 1, pp. 206-212
    [3] R.C. Holehouse, K. Atallah, J. Wang. Design and realization of alinear magnetic gear. IEEE Transactions on Magnetics, vol. 47, no. 10,pp. 4171-4174
    [4] H. Cheng-Chi, T. Mi-Ching, D.G. Dorrell, L. Bor-Jeng.Development of a magnetic planetary gearbox. IEEE Transactions onMagnetics, vol. 44, no. 3, pp. 403-412
    [5] M. C. Tsai, C. C. Huang. Development of a variable-inertia devicewith a magnetic planetary gearbox. IEEE Transactions on Magnetics,vol. 16, no. 6, pp. 1120-1128
    [6] K. Atallah, S.D. Calverley, D. Howe. Design, analysis andrealisation of a high-performance magnetic gear. IEE Proceedings onElectrical Power Applications, vol. 151, no. 2, pp. 135 –143
    [7] E. Gouda, S. Mezani, L. Baghli, A. Rezzoug. Comparative studybetween mechanical and magnetic planetary gears. IEEE Transactionson Magnetics, vol. 47, no. 2, pp. 439-450
    [8] P.O. Rasmussen, T.O. Andersen, F.T. Jorgensen, O. Nielsen.Development of a high-performance magnetic gear. IEEE Transactionson Industry Applications, vol. 41, no. 3, pp. 764-770
    [9] B.S. Kim, J.-B. Song, J.J. Park. A serial-type dual actuator unit withplanetary gear train: Basic design and applications. IEEE/ASMETransactions on Mechatronics, vol. 15, no. 1, pp. 108-116
    [10] H.S. Yan, Y.C. Wu. A novel design of a brushless DC motorintegrated with an embedded planetary gear train. IEEE/ASMETransactions on Mechatronics, vol. 11, no. 5, pp. 551– 557
    [11] K. Atallah, J. Rens, S. Mezani, D. Howe. A novel ‘pseudo’ directdrive brushless permanent magnet machine. IEEE Transactions onIndustry Applications, vol. 44, no. 11, pp. 4349-4353
    [12] K.T. Chau, C.C. Chan, L. Chunhua. Overview ofpermanent-magnet brushless drives for electric and hybrid electricvehicles. IEEE Transactions on Industry Applications, vol. 55, no. 6,pp.2246-2257
    [13] J. Linni, X. Guoqing, W. Yuanyuan, X. Cheng, J. Song. A novelpower-train using coaxial magnetic gear for power-split hybrid electricvehicles. Proceedings of IEEE International Conference on ElectricalMachines and Systems (ICEMS), IEEE, Beijing, China, August 2011,pp. 1-6
    [14] J. Linni, K.T. Chau, J.Z. Jiang. Anintegrated magnetic-geared permanent-magnet in-wheel motor drive forelectric vehicles. Proceedings of IEEE International Conference onVehicle Power and Propulsion (VPPC), IEEE, Hei Longjiang, China,September 2008, pp. 1-6
    [15] N.W. Frank, H.A. Toliyat. Gearing ratios ofa magnetic gear for marine applications. Electric Ship TechnologiesSymposium, Baltimore, Maryland USA, April 2009, pp. 477-481
    [16] L.N. Jian, K.T. Chau, D. Zhang, J.Z. Jiang, Z. Wang. Amagnetic-geared outer-rotor permanent-magnet brushless machine forwind power generation. IEEE Industry Applications Conference,Calgary, Canada, Feb/March 2007, pp. 573-580
    [17] N.W. Frank, H.A. Toliyat. Gearing ratios of a magnetic gear forwind turbines. IEEE International Electric Machines and DrivesConference, IEEE, Miami, USA, May 2009, pp. 1224-1230
    [18] G.Q. Bao, K.F. Mao. A wind energy conversion system with fieldmodulated magnetic gear. Power and Energy Engineering Conference(APPEEC 2011), Wuhan, China, March 2011, pp. 1-4
    [19] L. Shah, A. Cruden, B.W. Williams. A magnetic gear box forapplication with a contra-rotating tidal turbine. Seventh InternationalConference on Power Electronics and Drive Systems(PEDS 2007),Bangkok, Thailand, November 2007, pp. 989-993
    [20] L. Wenlong, K.T. Chau, J.Z. Jiang. Application of linear magneticgears for pseudo-direct-drive oceanic wave energy harvesting. IEEETransactions on Magnetics, vol.47, no. 10, pp. 2624-2627
    [21] Y. Du, K.T. Chau, M. Cheng, Y. Wang. Alinear magnetic-geared permanent magnet machine for wave energygeneration. International Conference on Electrical Machines andSystems (ICEMS 2010), Incheon, South Korea, October 2010, pp.1538-1541
    [22] R.G. Montague, C.M. Bingham, K. Atallah. Characterisationand modelling of magnetic couplings and gears for servo controlsystems. 5th IET International Conference on Power Electronics,Machines and Drives (PEMD 2010), Brighton, England, Feb. 2010, pp.1-6
    [23] R.G. Montague, C.M. Bingham, K. Atallah. Servo control ofmagnetic gears. IEEE/ASME Transactions on Mechatronics, vol. 17,no. 2, pp. 269-278
    [24] R.G. Montague, C.M. Bingham, K. Atallah. Magnetic geardynamics for servo control. 15th IEEE Mediterranean ElectrotechnicalConference (MELECON 2010), Valetta, Malta, April 2010, pp. 1192-1197.
    [25] R.G. Montague, C.M. Bingham, K. Atallah.Dual-observer-based position servo-control of a magnetic gear. IETElectrical Power Applications, vol. 5, no. 9, pp. 708-714
    [26] R.G. Montague, C.M. Bingham, K. Atallah. Magnetic gearoverload detection and remedial strategies for servo-drive systems.International Symposium on Power Electronics Electrical DrivesAutomation and Motion (SPEEDAM 2010), Pisa, Italy, June 2010, pp.523-528
    [27] R.G. Montague, C.M. Bingham, K. Atallah. Magnetic gearpole-slip prevention using explicit model predictive control.IEEE/ASME Transactions on Mechatronics, vol. PP, no. 99, pp.1-9
    [28] S. E. Talole, J. P. Kolhe, S. B Phadke.Extended-state-observer-based control of flexible-joint system withexperimental validation. IEEE Transactions on Industrial Electronics,vol. 57, no. 4, pp. 1411-1419
    [29] C.I. Byrnes, A. Isidori. Global feedback stabilization ofnonlinear systems. 24th IEEE CDC, Conference on Decision andControl, Florida, USA, December 1985, pp. 1031-1037
    [30] L. Hunt, S. Renjeng, G. Meyer. Global transformations ofnonlinear systems. IEEE Transactions on Automatic Control, vol. 28,no. 1, pp. 24-31
  • 加载中
  • [1] Aleksey Kabanov, Vasiliy Alchakov. Composite Control of Nonlinear Singularly Perturbed Systems via Approximate Feedback Linearization . International Journal of Automation and Computing, 2020, 17(4): 610-620.  doi: 10.1007/s11633-017-1076-9
    [2] Hiroki Matsumori, Ming-Cong Deng, Yuichi Noge. An Operator-based Nonlinear Vibration Control System Using a Flexible Arm with Shape Memory Alloy . International Journal of Automation and Computing, 2020, 17(1): 139-150.  doi: 10.1007/s11633-018-1149-4
    [3] Olfa Yahya, Zeineb Lassoued, Kamel Abderrahim. Predictive Control Based on Fuzzy Supervisor for PWARX Hybrid Model . International Journal of Automation and Computing, 2019, 16(5): 683-695.  doi: 10.1007/s11633-018-1148-5
    [4] Shotaro Kawahata, Ming-Cong Deng. Operator-based Nonlinear Temperature Control Experiment for Microreactor Group Actuated by Peltier Devices . International Journal of Automation and Computing, 2016, 13(4): 401-408.  doi: 10.1007/s11633-016-0994-2
    [5] Zhong-Ping Jiang,  Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control . International Journal of Automation and Computing, 2015, 12(5): 455-466.  doi: 10.1007/s11633-015-0906-x
    [6] Chun-Li Zhang,  Jun-Min Li. Adaptive Iterative Learning Control of Non-uniform Trajectory Tracking for Strict Feedback Nonlinear Time-varying Systems . International Journal of Automation and Computing, 2014, 11(6): 621-626.  doi: 10.1007/s11633-014-0819-0
    [7] Bin Wang,  Jun-Yong Zhai,  Shu-Min Fei. Output Feedback Tracking Control for a Class of Switched Nonlinear Systems with Time-varying Delay . International Journal of Automation and Computing, 2014, 11(6): 605-612.  doi: 10.1007/s11633-014-0848-8
    [8] Bai-Shun Liu,  Xiang-Qian Luo,  Jian-Hui Li. General Convex Integral Control . International Journal of Automation and Computing, 2014, 11(5): 565-570.  doi: 10.1007/s11633-014-0813-6
    [9] Jun Wang, Hai-Long Pei, Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure . International Journal of Automation and Computing, 2013, 10(5): 463-471.  doi: 10.1007/s11633-013-0743-8
    [10] Paramita Guha,  Mashuq Un Nabi. Model Reduction and Controller Design for a Nonlinear Heat Conduction Problem Using Finite Element Method . International Journal of Automation and Computing, 2012, 9(5): 474-479.  doi: 10.1007/s11633-012-0669-6
    [11] Fusaomi Nagata, Keigo Watanabe. Adaptive Learning with Large Variability of Teaching Signals for Neural Networks and Its Application to Motion Control of an Industrial Robot . International Journal of Automation and Computing, 2011, 8(1): 54-61.  doi: 10.1007/s11633-010-0554-0
    [12] Shao-Cheng Tong,  Yong-Ming Li. Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks . International Journal of Automation and Computing, 2009, 6(2): 145-153.  doi: 10.1007/s11633-009-0145-0
    [13] Some Remarks on the Boundedness and Convergence Properties of Smooth Sliding Mode Controllers . International Journal of Automation and Computing, 2009, 6(2): 154-158.  doi: 10.1007/s11633-009-0154-z
    [14] Anna Witkowska,  Roman Smierzchalski. Nonlinear Backstepping Ship Course Controller . International Journal of Automation and Computing, 2009, 6(3): 277-284.  doi: 10.1007/s11633-009-0277-2
    [15] Jun Ren,  Chun-Wen Li,  De-Zong Zhao. Linearizing Control of Induction Motor Based on Networked Control Systems . International Journal of Automation and Computing, 2009, 6(2): 192-197.  doi: 10.1007/s11633-009-0192-6
    [16] Ming-Zhe Hou, Ai-Guo Wu, Guang-Ren Dua. Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics . International Journal of Automation and Computing, 2008, 5(3): 307-312.  doi: 10.1007/s11633-008-0307-5
    [17] Dan Necsulescu, Yi-Wu Jiang, Bumsoo Kim. Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle . International Journal of Automation and Computing, 2007, 4(1): 71-79.  doi: 10.1007/s11633-007-0071-y
    [18] Keylan Alimhan,  Hiroshi Inaba. Output Feedback Control for a Class of Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(3): 215-221.  doi: 10.1007/s11633-006-0215-5
    [19] Akira Inoue,  Ming-Cong Deng. Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System . International Journal of Automation and Computing, 2006, 3(3): 229-234.  doi: 10.1007/s11633-006-0229-z
    [20] Yun Li, Hiroshi Kashiwagi. High-Order Volterra Model Predictive Control and Its Application to a Nonlinear Polymerisation Process . International Journal of Automation and Computing, 2005, 2(2): 208-214.  doi: 10.1007/s11633-005-0208-9
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5669) PDF downloads (4464) Citations (0)

Nonlinear Control of Magnetically-geared Drive-trains

  • Corresponding author: Ryan Montague

Abstract: The paper considers certain impedimental issues related to the use of magnetic gearbox and magnetic coupling technologies in high performance servo control systems. A prototype magnetic coupling is used as a basis for demonstrating that the underlying torque transfer characteristic is significantly nonlinear when transmitted torque approaches the maximum designed pull-out torque of the device. It is shown that linear controllers for speed control proportional plus integral (PI) and position control proportional plus derivative (PD) result in acceptable performance provided the magnetic coupling operates below 80% of designed pull-out torque. To fully compensate for the inherent nonlinearity of the torque transfer characteristic, feedback linearizing control laws and state transformations are derived resulting in exactly linear input-output characteristic for position and speed control of magnetically-geared drive-trains. With the addition of state feedback, the closed-loop dynamics for both position and speed control of a magneticallygeared drive-train can be designed to satisfy the integral of time multiplied by absolute error (ITAE) optimized linear response for a step input. Outstanding results are demonstrated through simulation and experimental real-time implementation on a demonstrator magnetically-geared drive-train.

Ryan Montague and Chris Bingham. Nonlinear Control of Magnetically-geared Drive-trains. International Journal of Automation and Computing, vol. 10, no. 4, pp. 319-326, 2013. doi: 10.1007/s11633-013-0727-8
Citation: Ryan Montague and Chris Bingham. Nonlinear Control of Magnetically-geared Drive-trains. International Journal of Automation and Computing, vol. 10, no. 4, pp. 319-326, 2013. doi: 10.1007/s11633-013-0727-8
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return