Volume 10 Number 4
August 2013
Article Contents
Guo-Dong Zhao and Na Duan. A Continuous State Feedback Controller Design for High-order Nonlinear Systems with Polynomial Growth Nonlinearities. International Journal of Automation and Computing, vol. 10, no. 4, pp. 267-274, 2013. doi: 10.1007/s11633-013-0720-2
Cite as: Guo-Dong Zhao and Na Duan. A Continuous State Feedback Controller Design for High-order Nonlinear Systems with Polynomial Growth Nonlinearities. International Journal of Automation and Computing, vol. 10, no. 4, pp. 267-274, 2013. doi: 10.1007/s11633-013-0720-2

A Continuous State Feedback Controller Design for High-order Nonlinear Systems with Polynomial Growth Nonlinearities

Author Biography:
  • Na Duan received her Ph.D. degree from Institute of Automation, Qufu Normal University, China. Now she is an associate professor of Jiangsu Normal University, China. Her research interests include high-order system controller design, nonlinear highorder system controller design, and stochastic nonlinear control. E-mail: duanna08@163.com

  • Corresponding author: Guo-Dong Zhao
  • Received: 2012-10-22
Fund Project:

This work was supported by National Natural Science Foundation of China (Nos. 61273125 and 61104222), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103705110002), Program for the Scientific Research Innovation Team in Colleges and Universities of Shandong Province, Shandong Provincial Natural Science Foundation of China (No. ZR2012FM018), Natural Science Foundation of Jiangsu Province (No.BK2011205), and Natural Science Foundation of Jiangsu Normal University(No. 11XLR08).

  • In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designed continuous state feedback controller is recursively constructed to guarantee the global strong stabilization of the closed-loop system.
  • 加载中
  • [1] W. Lin. http://nonlinear.cwru.edu/ linwei/, 2010.
    [2] C. J. Qian. Global Synthesis of Nonlinear Systems WithUncontrollable Linearization. Ph.D. Dissertation, 2001.
    [3] H. Lei. Universal Output Feedback Control of NonlinearSystems. Ph.D. Dissertation, 2008.
    [4] W. Lin, C. J. Qian. Adding one power integrator: A tool forglobal stabilization of high-order lower-triangular systems.Systems and Control Letters, vol. 39, no. 5, pp. 339–351,2000.
    [5] W. Lin, C. J. Qian. Adaptive regulation of high-order cas-cade nonlinear systems: An adding a power integrator tech-nique. Systems and Control Letters, vol. 39, no. 5, pp. 353–364, 2000.
    [6] B. Yang, W. Lin. Robust output feedback stabilization ofuncertain nonlinear systems with uncontrollable and un-observable linearization. IEEE Transactions on AutomaticControl, vol. 50, no. 7, pp. 619–630, 2005.
    [7] N. Duan, F. N. Hu, X. Yu. An improved control algorithmfor a class of high-order nonlinear systems with unmodelleddynamics. International Journal of Automation and Computing, vol. 6, no. 3, pp. 234–239, 2009.
    [8] J. Polendo, C. J. Qian. A generalized framework for globaloutput feedback stabilization of genuinely nonlinear system-s. Proceedings of the 44th IEEE Conference on Decision andControl, and European Control Conference, Seville, Spain,pp. 2646–2651, 2005.
    [9] C. J. Qian. A homogeneous domination approach for globaloutput feedback stabilization of a class of nonlinear system-s. Proceedings of the 2005 American Control Conference,Portland, OR, USA, pp. 4708–4715, 2005.
    [10] J. Polendo, C. J. Qian. A generalized homogeneous domi-nation approach for global stabilization of inherently non-linear systems via output feedback. International Journal ofRobust and Nonlinear Control, vol. 17, no. 7, pp. 605–629,2007.
    [11] V. Andrieu, L. Praly, A. Astolfi. Nonlinear output feedbackdesign via domination and generalized weighted homogene-ity. Proceedings of the 45th IEEE Conference on Decisionand Control, pp. 6391–6396, 2006.
    [12] J. Kurzweil. On the inversion of Lyapunov’s Second The-orem on the stability of motion. American MathematicalSociety Translations, Ser 2, vol. 24, pp. 19–77, 1956.
    [13] C. J. Qian,W. Lin. A continuous feedback approach to glob-al strong stabilization of nonlinear systems. IEEE Transactionson Automatic Control, vol. 46, no. 7, pp. 1061–1079,2001.
    [14] C. J. Qian,W. Lin. Recursive observer design, homogeneousapproximation, and nonsmooth output feedback stabiliza-tion of nonlinear systems. IEEE Transactions on AutomaticControl, vol. 51, no. 9, pp. 1457–1471, 2006.
    [15] J. Polendo, C. J. Qian, H. Lei, W. Lin. A dual observ-er method for the global stabilization of nonlinear systemswith limited and uncertain information. Proceedings of the2007 American Control Conference, New York, USA, pp.5354–5359, 2007.
    [16] H. Lei, W. Lin. Robust control of uncertain systems withpolynomial nonlinearity by output feedback. InternationalJournal of Robust and Nonlinear Control, vol. 19, no. 6, pp.692–723, 2009.
    [17] H. Lei, W. Lin. Reduced-order observer, homogeneous dom-ination and nonsmooth output feedback stabilization ofnonlinear systems. Proceedings of the 2008 World congresson Intelligent Control and Automation, Chongqing, China,pp. 394–399, 2008.
    [18] X. J. Xie, J. Tian. State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inversedynamics. International Journal of Robust and NonlinearControl, vol. 17, no. 14, pp. 1343–1362, 2007.
    [19] J. Tian, X.J. Xie. Adaptive state-feedback stabilizationfor high-order stochastic non-linear systems with uncertaincontrol coefficients. International Journal of Control, vol.80, no. 9, pp. 1503-1516, 2007.
    [20] Z. J. Wu, X. J. Xie, S. Y. Zhang. Adaptive backsteppingcontroller design using stochastic small-gain theorem. Automatica, vol. 43, no. 4, pp. 608–620, 2007.
    [21] W. Q. Li, X. J. Xie. Inverse optimal stabilization for s-tochastic nonlinear systems whose linearizations are notstabilizable. Automatica, vol. 45, no. 2, pp. 498–503, 2009.
    [22] Z. J. Wu, X. J. Xie, P. Shi, Y. Q. Xia. Backstepping con-troller design for a class of stochastic nonlinear systems withMarkovian switching. Automatica, vol. 45, no. 4, pp. 997-1004, 2009.
    [23] X. J. Xie, J. Tian. Adaptive state-feedback stabilization ofhigh-order stochastic systems with nonlinear parameteriza-tion. Automatica, vol. 45, no. 1, pp. 126–133, 2009.
    [24] X. J. Xie, W. Q. Li. Output-feedback control of a class ofhigh-order stochastic nonlinear systems. International Journalof Control, vol. 82, no. 9, pp. 1692–1705, 2009.
    [25] L. Liu, X. J. Xie. Decentralized adaptive stabilization for in-terconnected systems with dynamic input-output and non-linear interactions. Automatica, vol. 46, no. 6, pp. 1060-1067, 2010.
    [26] X. J. Xie, N. Duan. Output tracking of high-order stochasticnonlinear systems with application to benchmark mechani-cal system. IEEE Transactions on Automatic Control, vol.55, no. 5, pp. 1197–1202, 2010.
    [27] X. Yu, X. J. Xie, N. Duan. Small-gain control method forstochastic nonlinear systems with stochastic iISS inversedynamics. Automatica, vol. 46, no. 11, pp. 1790-1798, 2010.
    [28] X. J. Xie, N. Duan, X. Yu. State-feedback control of high-order stochastic nonlinear systems with SiISS inverse dy-namics. IEEE Transactions on Automatic Control, vol. 56,no. 8, pp. 1921–1926, 2011.
    [29] N. Duan, X. J. Xie. Further results on output-feedback sta-bilization for a class of stochastic nonlinear systems. IEEETransactions on Automatic Control, vol. 56, no. 5, pp.1208–1213, 2011.
    [30] N. Duan, X. J. Xie, X. Yu. State feedback stabilization ofstochastic nonlinear systems with SiISS inverse dynamics.International Journal of Robust and Nonlinear Control, vol.21, no. 16, pp. 1903-1919, 2011.
    [31] N. Duan, X. Yu, X. J. Xie. Output feedback control usingsmall-gain conditions for stochastic nonlinear systems withSiISS inverse dynamics. International Journal of Control,vol. 84, no. 1, pp. 47-56, 2011.
    [32] L. Liu, X. J. Xie. Output-feedback stabilization for stochas-tic high-order nonlinear systems with time-varying delay.Automatica, vol. 47, no. 12, pp. 2772–2779, 2011.
    [33] W. Q. Li, X. J. Xie, S. Y. Zhang. Output-feedback sta-bilization of stochastic high-order nonlinear systems underweaker conditions. SIAM Journal on Control and Optimization, vol. 49, no. 3, pp. 1262–1282, 2011.
    [34] L. Liu, X. J. Xie. State-feedback stabilization for stochastichigh-order nonlinear systems with SISS inverse dynamics.Asian Journal of Control, vol. 14, no. 4, pp. 1-11, 2012.
    [35] X. J. Xie, L. Liu. Further result on output feedback sta-bilization for stochastic high-order nonlinear systems withtime-varying delay. Automatica, vol. 48, no. 9, pp. 2577–2586, 2012.
    [36] C. R. Zhao, X. J. Xie. Output feedback stabilization us-ing small-gain method and reduced-order observer for s-tochastic nonlinear systems. IEEE Transactions on AutomaticControl, vol. 58, no. 2, pp. 523-528, 2013.
    [37] X. J. Xie, L. Liu. A homogeneous domination approach toa class of stochastic time-varying delay nonlinear systems.IEEE Transactions on Automatic Control, vol. 58, no. 2,pp. 494-499, 2013.
  • 加载中
  • [1] Chang-Chun Sun. Stabilization for a Class of Discrete-time Switched Large-scale Systems with Parameter Uncertainties . International Journal of Automation and Computing, 2019, 16(4): 543-552.  doi: 10.1007/s11633-016-0966-6
    [2] Amir Hossein Davaie Markazi, Mohammad Maadani, Seyed Hassan Zabihifar, Nafiseh Doost-Mohammadi. Adaptive Fuzzy Sliding Mode Control of Under-actuated Nonlinear Systems . International Journal of Automation and Computing, 2018, 15(3): 364-376.  doi: 10.1007/s11633-017-1108-5
    [3] Zhong-Ping Jiang,  Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control . International Journal of Automation and Computing, 2015, 12(5): 455-466.  doi: 10.1007/s11633-015-0906-x
    [4] Tuo Zhou,  Xi-Qin He. An Improved H Filter Design for Nonlinear Systems Described by T-S Fuzzy Models with Time-varying Delay . International Journal of Automation and Computing, 2015, 12(6): 671-678.  doi: 10.1007/s11633-015-0930-x
    [5] Chang-Chun Hua,  Shao-Chong Yu,  Xin-Ping Guan. Finite-time Control for a Class of Networked Control Systems with Short Time-varying Delays and Sampling Jitter . International Journal of Automation and Computing, 2015, 12(4): 448-454.  doi: 10.1007/s11633-014-0849-7
    [6] Alessandro di Gaeta,  Umberto Montanaro. Application of a Robust Model Reference Adaptive Control Algorithm to a Nonlinear Automotive Actuator . International Journal of Automation and Computing, 2014, 11(4): 377-391.  doi: 10.1007/s11633-014-0803-8
    [7] Meng Zhao,  Bao-Cang Ding. A Contractive Sliding-mode MPC Algorithm for Nonlinear Discrete-time Systems . International Journal of Automation and Computing, 2013, 10(2): 167-172.  doi: 10.1007/s11633-013-0709-x
    [8] Hassan A. Yousef, Mohamed Hamdy. Observer-based Adaptive Fuzzy Control for a Class of Nonlinear Time-delay Systems . International Journal of Automation and Computing, 2013, 10(4): 275-280.  doi: 10.1007/s11633-013-0721-1
    [9] Lei-Po Liu,  Zhu-Mu Fu,  Xiao-Na Song. Sliding Mode Control with Disturbance Observer for Class of Nonlinear Systems . International Journal of Automation and Computing, 2012, 9(5): 487-491.  doi: 10.1007/s11633-012-0671-z
    [10] Zhong-Cai Zhang,  Yu-Qiang Wu. Globally Asymptotic Stabilization for Nonlinear Time-delay Systems with ISS Inverse Dynamics . International Journal of Automation and Computing, 2012, 9(6): 634-640 .  doi: 10.1007/s11633-012-0689-2
    [11] Chang-Liang Liu, Shao-Cheng Tong, Yong-Ming Li, Yuan-Qing Xia. Adaptive Fuzzy Backstepping Output Feedback Control of Nonlinear Time-delay Systems with Unknown High-frequency Gain Sign . International Journal of Automation and Computing, 2011, 8(1): 14-22.  doi: 10.1007/s11633-010-0549-x
    [12] Wen-De Chen, Yue-Gang Tao, Hong-Nian Yu. Independent Cycle Time Assignment for Min-max Systems . International Journal of Automation and Computing, 2010, 7(2): 254-260.  doi: 10.1007/s11633-010-0254-9
    [13] Shao-Cheng Tong,  Yong-Ming Li. Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks . International Journal of Automation and Computing, 2009, 6(2): 145-153.  doi: 10.1007/s11633-009-0145-0
    [14] Ming-Zhe Hou, Ai-Guo Wu, Guang-Ren Dua. Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics . International Journal of Automation and Computing, 2008, 5(3): 307-312.  doi: 10.1007/s11633-008-0307-5
    [15] Bibhrajit Halder,  Nilanjan Sarkar. Robust Nonlinear Analytic Redundancy for Fault Detection and Isolation in Mobile Robot . International Journal of Automation and Computing, 2007, 4(2): 177-182.  doi: 10.1007/s11633-007-0177-2
    [16] Ling-Lai Li,  Dong-Hua Zhou,  Ling Wang. Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm . International Journal of Automation and Computing, 2007, 4(2): 183-188.  doi: 10.1007/s11633-007-0183-4
    [17] Sing Kiong Nguang, Ping Zhang, Steven X. Ding. Parity Relation Based Fault Estimation for Nonlinear Systems: An LMI Approach . International Journal of Automation and Computing, 2007, 4(2): 164-168.  doi: 10.1007/s11633-007-0164-7
    [18] Jochen Aβfalg, Frank Allgöwer. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models . International Journal of Automation and Computing, 2007, 4(2): 141-148.  doi: 10.1007/s11633-007-0141-1
    [19] David H. Owens, Maria Tomas-Rodriguez, Jari J. Hatönen. Limiting Behaviour in Parameter Optimal Iterative Learning Control . International Journal of Automation and Computing, 2006, 3(3): 222-228.  doi: 10.1007/s11633-006-0222-6
    [20] Min-Ze Chen,  Qi Zhao,  Dong-Hua Zhou. A Robust Fault Detection Approach for Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(1): 23-28.  doi: 10.1007/s11633-006-0023-y
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5948) PDF downloads (2242) Citations (0)

A Continuous State Feedback Controller Design for High-order Nonlinear Systems with Polynomial Growth Nonlinearities

  • Corresponding author: Guo-Dong Zhao
Fund Project:

This work was supported by National Natural Science Foundation of China (Nos. 61273125 and 61104222), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103705110002), Program for the Scientific Research Innovation Team in Colleges and Universities of Shandong Province, Shandong Provincial Natural Science Foundation of China (No. ZR2012FM018), Natural Science Foundation of Jiangsu Province (No.BK2011205), and Natural Science Foundation of Jiangsu Normal University(No. 11XLR08).

Abstract: In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designed continuous state feedback controller is recursively constructed to guarantee the global strong stabilization of the closed-loop system.

Guo-Dong Zhao and Na Duan. A Continuous State Feedback Controller Design for High-order Nonlinear Systems with Polynomial Growth Nonlinearities. International Journal of Automation and Computing, vol. 10, no. 4, pp. 267-274, 2013. doi: 10.1007/s11633-013-0720-2
Citation: Guo-Dong Zhao and Na Duan. A Continuous State Feedback Controller Design for High-order Nonlinear Systems with Polynomial Growth Nonlinearities. International Journal of Automation and Computing, vol. 10, no. 4, pp. 267-274, 2013. doi: 10.1007/s11633-013-0720-2
Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return