Volume 9 Number 3
June 2012
Article Contents
Lei Liu, Feng Yang, Peng Zhang, Jing-Yi Wu and Liang Hu. SVM-based Ontology Matching Approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 306-314, 2012. doi: 10.1007/s11633-012-0649-x
Cite as: Lei Liu, Feng Yang, Peng Zhang, Jing-Yi Wu and Liang Hu. SVM-based Ontology Matching Approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 306-314, 2012. doi: 10.1007/s11633-012-0649-x

SVM-based Ontology Matching Approach

Author Biography:
  • Corresponding author: Liang Hu
  • Received: 2010-08-17
Fund Project:

This work was supported by National Natural Science Foundation of China (No.60873044), Science and Technology Research of the Department of Jilin Education (Nos.2009498, 2011394), and Opening Fund of Top Key Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University of China (No.ZSDZZZZXK11).

  • There are a lot of heterogeneous ontologies in semantic web, and the task of ontology mapping is to find their semantic relationship. There are integrated methods that only simply combine the similarity values which are used in current multi-strategy ontology mapping. The semantic information is not included in them and a lot of manual intervention is also needed, so it leads to that some factual mapping relations are missed. Addressing this issue, the work presented in this paper puts forward an ontology matching approach, which uses multi-strategy mapping technique to carry on similarity iterative computation and explores both linguistic and structural similarity. Our approach takes different similarities into one whole, as a similarity cube. By cutting operation, similarity vectors are obtained, which form the similarity space, and by this way, mapping discovery can be converted into binary classification. Support vector machine (SVM) has good generalization ability and can obtain best compromise between complexity of model and learning capability when solving small samples and the nonlinear problem. Because of the said reason, we employ SVM in our approach. For making full use of the information of ontology, our implementation and experimental results used a common dataset to demonstrate the effectiveness of the mapping approach. It ensures the recall ration while improving the quality of mapping results.
  • 加载中
  • [1] T. Berners-Lee, J. Hendler, O. Lassila. The semantic web. Scientific American, vol.284, no.5, pp.34--43, 2001.
    [2] Amino Acid Ontologyv1.3, [Online], Available: {http://www.co-ode.org/ontologies/amino-acid/2009/02/16/, March 4, 2012.
    [3] Customer Complaint Ontology, [Online], Available: {http://www.jarrar.info/CContology/, March 4, 2012.
    [4] Search or Browse the Plant Ontology Database, [Online], Available: {http://www.plantontology.org/, March 4, 2012.
    [5] Gellish, [Online], Available: {http://sourceforge.net/apps/ trac/gellish/, March 4, 2012.
    [6] The NeOn project and the NeOn Foundation, [Online], Available: {http://aims.fao.org/website/NeON/sub2}, March 4, 2012.
    [7] B. T. Le, R. Dieng-Kuntz, F. Gandon. On ontology matching problems for building a corporate semantic web in a multi-communities organization. In Proceedings of the 6th International Conference on Enterprise Information Systems, PubZone, Porto, Portugal, pp.236--243, 2004.
    [8] J. Euzenat, P. Valtchev. Similarity-based ontology alignment for OWL-Lite. In Proceedings of European Conference on Artificial Intelligence, pp.333--337, 2004. [Online], Available: http://disi.unitn.it/ accord/RelatedWork/Matching/align-ECAI04-FSub.pdf, March 4, 2012.
    [9] S. Castano, A. Ferrara, S. Montanelli. Matching ontologies in open networked systems: Techniques and applications. Journal on Data Semantics, vol.3870, pp.25--63, 2006.
    [10] H. Do, E. Rahm. Coma: A system for flexible combination of schema matching approaches. In Proceedings of the 28th International Conference on Very Large Data Bases, PubZone, Hong Kong, PRC, pp.610--621, 2002.
    [11] A. H. Doan, P. Domingos, A. Y. Halevy. Reconciling schemas of disparate data sources: A machine-learning approach. In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, ACM, New York, USA, pp.509--520, 2001.
    [12] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition, vol.5, no.2, pp.199--220, 1993.
    [13] R. Studer, V. R. Benjamins, D. Fensel. Knowledge engineering: Principles and methods. Data and Knowledge Engineering, vol.25, no.1--2, pp.161--197, 1998.
    [14] A. G. Perez, V. R. Benjamins. Overview of knowledge sharing and reuse components: Ontologies and problem solving methods. In Proceedings of the IJCAI299 Workshop on Ontologies and Problem-solving Methods, pp.1-1--1-15, 1999.
    [15] E. Rahm, P. A. Bernstein. A survey of approaches to automatic schema matching. The VLDB Journal, vol.10, no.4, pp.334--350, 2001.
    [16] Z. J. Wang, Y. L. Wang, S. S. Zhang. Effective large scale ontology mapping. In Proceedings of the 1st International Conference on Knowledge Science, Engineering and Management, Springer, Guilin, PRC, pp.454--465, 2006.
    [17] D. Thau, S. Bowers, B. Ludascher. Merging sets of taxonomically organized data using concept mappings under uncertainty. In Proceedings of the Confederated International Conferences, CoopIS, DOA, IS, and ODBASE 2009 on the Move to Meaningful Internet Systems: Part II, ACM, Berlin, Germany, pp.1103--1120, 2009.
    [18] P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, S. Tessaris. Specification of a Common Framework for Characterizing Alignment, Technical Report, University of Karlsruhe, Germany, 2004.
    [19] A. Locoro, V. Mascardi. A correspondence repair algorithm based onword sense disambiguation and upper ontologies. In Proceedings of KEOD, 2009. [Online], Available: http://www.disi.unige.it/person/LocoroA/download/Loco-roMascardiKeod2009.pdf, March 4, 2012.
    [20] WorldNet, [Online], Available: http://wordnet. princeton. edu/, March 4, 2012.
    [21] A. E. Monge, C. P. Elkan. The field matching problem: Algorithms and applications. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, AAAI, pp.267--270, 1996.
    [22] P. Pantel, D. Lin. Discovering word senses from text. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Edmonton, Canada, pp.613--619, 2002.
    [23] G. Alexander, D. David, M. David. Large-scale Bayesian logistic regression for text categorization. Technometrics, vol.49, no.3, pp.291--304, 2007.
    [24] S. Ashok, S. Mehran. Text Mining: Classification, Clustering, and Applications, Boca Raton, USA: CRC Press, 2009.
    [25] H. Kim, P. Howland, H. Park. Dimension reduction in text classification with support vector machine. Journal of Machine Learning Research, vol.6, pp.37--53, 2005.
    [26] F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, vol.34, no.1, pp.1--47, 2002.
    [27] N. Miklos, V. Maria, M. Enrico. DSSim --- Managing uncertainty on the semantic web. In Proceedings of the 2nd International Workshop on Ontology Matching, 2007. [Online], Available: http://wenku.baidu.com/view/3916881052d380eb62946d7a.html, March 4, 2012.
    [28] A. Doan, J. Madhavan, P. Domingos, A. Halevy. Learning to map between ontologies on the semantic web. In Proceedings of the 11th World Wide Web Conference, pp.662--673, 2002. [Online], Available: http://wenku.baidu.com/view/23e2f1000740be1e650e9ae3.html, March 4, 2012.
    [29] N. F. Noy, M. A. Musen. Algorithm and tool for automated ontology merging and alignment. In Proceedings of the 2000 National Conference on Artificial Intelligence, AAAI, Austin, USA, pp.450--455, 2000. %[Online], Available:
    [30] V. N. Vapnik. The Nature of Statistical Learning Theory, 2nd ed., New York, USA: Springer Verlag, 1999.
    [31] E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, San Juan, Puerto Rico, pp.130--136, 1997.
    [32] C. Y. Lu, P. F. Yan, C. S. Zhang, J. Zhou. Face recognition using support vector machine. In Proceedings of ICNNB'98, Beijing, PRC, pp.652--655, 1998.
    [33] V. Blanz, B. Schoblkopf, H. Bulthoff, C. Burges, V. Vapnik, T. Vetter. Comparison of view-based object recognition algorithms using realistic 3D models. [Online], Available: http://www.kyb.mpg.de/fileadmin/user_upload/files/publi-cations/pdfs/pdf445.pdf, March 4, 2012.
    [34] A. Alias, B. Subramanian, S. Pramala, B. Rajalakshmi, R. Rajaram. Improving decision tree performance by exception handling. International Journal of Automation and Computing, vol.7, no.3, pp.372--380, 2010.
    [35] X. H. Huang, X. J. Zeng, M. Wang. SVM-based identification and un-calibrated visual servoing for micro-manipulation. International Journal of Automation and Computing, vol.7, no.1, pp.47--54, 2010.
    [36] Ontology Alignment Evaluation Initiative, [Online], Available: http://oaei.ontologymatching.org/2009/, March 4, 2012.
  • 加载中
  • [1] Hao Wu, Zhao-Wei Chen, Guo-Hui Tian, Qing Ma, Meng-Lin Jiao. Item Ownership Relationship Semantic Learning Strategy for Personalized Service Robot . International Journal of Automation and Computing, 2020, 17(3): 390-402.  doi: 10.1007/s11633-019-1206-7
    [2] Jiao Yin, Jinli Cao, Siuly Siuly, Hua Wang. An Integrated MCI Detection Framework Based on Spectral-temporal Analysis . International Journal of Automation and Computing, 2019, 16(6): 786-799.  doi: 10.1007/s11633-019-1197-4
    [3] Huan-Zhao Chen, Guo-Hui Tian, Guo-Liang Liu. A Selective Attention Guided Initiative Semantic Cognition Algorithm for Service Robot . International Journal of Automation and Computing, 2018, 15(5): 559-569.  doi: 10.1007/s11633-018-1139-6
    [4] Guo-Han Lin, Jing Zhang, Liu Zhao-Hua. Hybrid Particle Swarm Optimization with Differential Evolution for Numerical and Engineering Optimization . International Journal of Automation and Computing, 2018, 15(1): 103-114.  doi: 10.1007/s11633-016-0990-6
    [5] Yi Yang, Fan Qiu, Hao Li, Lu Zhang, Mei-Ling Wang, Meng-Yin Fu. Large-scale 3D Semantic Mapping Using Stereo Vision . International Journal of Automation and Computing, 2018, 15(2): 194-206.  doi: 10.1007/s11633-018-1118-y
    [6] Mohamed Goudjil, Mouloud Koudil, Mouldi Bedda, Noureddine Ghoggali. A Novel Active Learning Method Using SVM for Text Classification . International Journal of Automation and Computing, 2018, 15(3): 290-298.  doi: 10.1007/s11633-015-0912-z
    [7] Shuo Wen, Yuan Xue, Jing Xu, Li-Ying Yuan, Wen-Li Song, Hong-Ji Yang, Guan-Nan Si. Lom: Discovering Logic Flaws Within MongoDB-based Web Applications . International Journal of Automation and Computing, 2017, 14(1): 106-118.  doi: 10.1007/s11633-016-1051-x
    [8] Hui Guan,  Hongji Yang,  Jun Wang. An Ontology-based Approach to Security Pattern Selection . International Journal of Automation and Computing, 2016, 13(2): 168-182.  doi: 10.1007/s11633-016-0950-1
    [9] Nassim Laouti,  Sami Othman,  Mazen Alamir,  Nida Sheibat-Othman. Combination of Model-based Observer and Support Vector Machines for Fault Detection of Wind Turbines . International Journal of Automation and Computing, 2014, 11(3): 274-287.  doi: 10.1007/s11633-014-0790-9
    [10] Sheng-Ye Yan, Xin-Xing Xu, Qing-Shan Liu. Robust Text Detection in Natural Scenes Using Text Geometry and Visual Appearance . International Journal of Automation and Computing, 2014, 11(5): 480-488.  doi: 10.1007/s11633-014-0833-2
    [11] R. I. Minu,  K. K. Thyagharajan. Semantic Rule Based Image Visual Feature Ontology Creation . International Journal of Automation and Computing, 2014, 11(5): 489-499.  doi: 10.1007/s11633-014-0832-3
    [12] Alamelu Mangai, Santhosh Kumar, S. Appavu alias Balamurugan. A Novel Feature Selection Framework for Automatic Web Page Classification . International Journal of Automation and Computing, 2012, 9(4): 442-448.  doi: 10.1007/s11633-012-0665-x
    [13] Xun Xu,  Hsiang-Hung Hsiao,  Wei-Lin Wang. FuzEmotion as a Backward Kansei Engineering Tool . International Journal of Automation and Computing, 2012, 9(1): 16-23.  doi: 10.1007/s11633-012-0611-y
    [14] Wei Huang, Ru Li, Carsten Maple, Hong-Ji Yang, David Foskett, Vince Cleaver. A Novel Lifecycle Model for Web-based Application Development in Small and Medium Enterprises . International Journal of Automation and Computing, 2010, 7(3): 389-398.  doi: 10.1007/s11633-010-0519-3
    [15] Ajit Kumar Verma,  A. Srividya,  P. G. Ramesh. A Systemic Approach to Integrated E-maintenance of Large Engineering Plants . International Journal of Automation and Computing, 2010, 7(2): 173-179.  doi: 10.1007/s11633-010-0173-9
    [16] Efosa Emmanuel Uyiomendo, Tore Markeset. Subsea Maintenance Service Delivery:Mapping Factors Influencing Scheduled Service Duration . International Journal of Automation and Computing, 2010, 7(2): 167-172.  doi: 10.1007/s11633-010-0167-7
    [17] Xiao-Feng Di,  Yu-Shun Fan. Implementation of Enterprises Interoperation Based on Ontology . International Journal of Automation and Computing, 2010, 7(3): 303-309.  doi: 10.1007/s11633-010-0507-7
    [18] Shaofeng Liu,  Chris McMahon,  Mansur Darlington,  Steve Culley,  Peter Wild. EDCMS:A Content Management System for Engineering Documents . International Journal of Automation and Computing, 2007, 4(1): 56-70.  doi: 10.1007/s11633-007-0056-x
    [19] Xun Chen,  Thitikorn Limchimchol. Monitoring Grinding Wheel Redress-life Using Support Vector Machines . International Journal of Automation and Computing, 2006, 3(1): 56-62.  doi: 10.1007/s11633-006-0056-2
    [20] L. Meng,  Q. H. Wu. Fast Training of Support Vector Machines Using Error-Center-Based Optimization . International Journal of Automation and Computing, 2005, 2(1): 6-12.  doi: 10.1007/s11633-005-0006-4
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5860) PDF downloads (2529) Citations (0)

SVM-based Ontology Matching Approach

    Corresponding author: Liang Hu
Fund Project:

This work was supported by National Natural Science Foundation of China (No.60873044), Science and Technology Research of the Department of Jilin Education (Nos.2009498, 2011394), and Opening Fund of Top Key Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University of China (No.ZSDZZZZXK11).

Abstract: There are a lot of heterogeneous ontologies in semantic web, and the task of ontology mapping is to find their semantic relationship. There are integrated methods that only simply combine the similarity values which are used in current multi-strategy ontology mapping. The semantic information is not included in them and a lot of manual intervention is also needed, so it leads to that some factual mapping relations are missed. Addressing this issue, the work presented in this paper puts forward an ontology matching approach, which uses multi-strategy mapping technique to carry on similarity iterative computation and explores both linguistic and structural similarity. Our approach takes different similarities into one whole, as a similarity cube. By cutting operation, similarity vectors are obtained, which form the similarity space, and by this way, mapping discovery can be converted into binary classification. Support vector machine (SVM) has good generalization ability and can obtain best compromise between complexity of model and learning capability when solving small samples and the nonlinear problem. Because of the said reason, we employ SVM in our approach. For making full use of the information of ontology, our implementation and experimental results used a common dataset to demonstrate the effectiveness of the mapping approach. It ensures the recall ration while improving the quality of mapping results.

Lei Liu, Feng Yang, Peng Zhang, Jing-Yi Wu and Liang Hu. SVM-based Ontology Matching Approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 306-314, 2012. doi: 10.1007/s11633-012-0649-x
Citation: Lei Liu, Feng Yang, Peng Zhang, Jing-Yi Wu and Liang Hu. SVM-based Ontology Matching Approach. International Journal of Automation and Computing, vol. 9, no. 3, pp. 306-314, 2012. doi: 10.1007/s11633-012-0649-x
Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return