Volume 8 Number 2
May 2011
Article Contents
Chun-Jie Zhou, Hui Chen, Yuan-Qing Qin, Yu-Feng Shi and Guang-Can Yu. Self-organization of Reconfigurable Protocol Stack for Networked Control Systems. International Journal of Automation and Computing, vol. 8, no. 2, pp. 221-235, 2011. doi: 10.1007/s11633-011-0577-1
Cite as: Chun-Jie Zhou, Hui Chen, Yuan-Qing Qin, Yu-Feng Shi and Guang-Can Yu. Self-organization of Reconfigurable Protocol Stack for Networked Control Systems. International Journal of Automation and Computing, vol. 8, no. 2, pp. 221-235, 2011. doi: 10.1007/s11633-011-0577-1

Self-organization of Reconfigurable Protocol Stack for Networked Control Systems

  • Received: 2010-05-03
Fund Project:

This work was supported by National Natural Science Foundation of China (No.60674081, No.60834002, No.61074145).

  • In networked control systems (NCS), the control performance depends on not only the control algorithm but also the communication protocol stack. The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack. In this paper, a novel architecture for the reconfigurable protocol stack is proposed, which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards. Within the architecture, a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack. Especially, the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode, routing and scheduling table. Finally, the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN). The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.
  • 加载中
  • [1] S. Kolla, D. Border, E. Mayer. Fieldbus networks for control system implementations. In Proceedings of Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference, IEEE, Indianapolis, USA, pp.493-498, 2003.
    [2] G. R. Wang, J. M. Qian. CAN bus and the higher layer protocol based on CAN protocol. Computer Measurement \& Control, vol.11, no.5, pp.391-394, 2003. (in Chinese)
    [3] X. M. Tang, J. S. Yu. Feedback scheduling of model-based networked control systems with flexible workload. International Journal of Automation and Computing, vol.5, no.4, pp.389-394, 2008
    [4] R. Duan, X. Y. Fan, D. Y. Gao, G. Shen. Reconfigurable computing technology and developing trends. Application Research of Computers, vol.21, no.8, pp.14-17, 2004. (in Chinese)
    [5] O. Lysne, T. M. Pinkston, J. Duato. A methodology for developing deadlock-free dynamic network reconfiguration processes. IEEE Transactions on Parallel and Distributed Systems, vol.16, no.5, pp.428-443, 2005.
    [6] L. M. An, H. K. Pung, L. F. Zhou. Design and implementation of a dynamic protocol framework. In Proceedings of the 12th IEEE International Conference on Networks, Singapore, vol.2, pp.552-558, 2004.
    [7] M. Muhugusa, G. D. Marzo, C. Tschudin, S. Eduardo, H. J\"urgen. Comscript: An environment for the implementation of protocol stacks and their dynamic reconfiguration. International Symposium on Applied Corporate Computing, 1994.
    [8] W. K. Chen, M. A. Hiltunen, R. D. Schlichting. Constructing adaptive software in distributed systems. In Proceedings of the 21st International Conference on Distributed Computing Systems, IEEE, Mesa, USA, pp.635-643, 2001.
    [9] G. T. Wong, M. A. Hiltunen, R. D. Schlichting. A configurable and extensible transport protocol. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, AK, USA, vol.1, pp.319-328, 2001.
    [10] K. T. Seng, G. Yu, S. T. Kean, W. A. Chee, G. Nirmalya. Dynamically loadable protocol stacks --- A message parser-generator implementation. IEEE Internet Computing, vol.8, no.2, pp.19-25, 2004.
    [11] C. Prehofer, C. Bettstetter. Self-organization in communication networks: Principles and design. IEEE Communications Magazine, vol.43, no.7, pp.78-85, 2005.
    [12] W. Ye, J. Heidemann, D. Estrin. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, vol.12, no.3, pp.493-506, 2004.
    [13] B. J. Chen, K. Jamieson, H. Balakrishnan, R. Morris. Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, vol.8, no.5, pp.481-494, 2002.
    [14] H. Abusaimeh, S. H. Yang. Dynamic cluster head for lifetime efficiency in WSN. International Journal of Automation and Computing, vol.6, no.1, pp.48-54, 2009.
    [15] D. Senthilkumar, A. Krishnan. Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing, vol.7, no.1, pp.95-104, 2010.
    [16] L. Yang, X. P. Guan, C. N. Long, X. Y. Luo. Feedback stabilization over wireless network using adaptive coded modulation. International Journal of Automation and Computing, vol.5, no.4, pp.381-388, 2008.
    [17] J. P. Thomesse. Fieldbus technology in industrial automation. Proceedings of the IEEE, vol.93, no.6, pp.1073-1101, 2005.
    [18] N. C. Hutchinson, L. L. Peterson. The X-kernel: An architecture for implementing network protocols. IEEE Transactions on Software Engineering, vol.17, no.1, pp.64-76, 1991.
    [19] S. Mena, X. Cuvellier, C. Gregoire, A. Schiper. Appia vs. Cactus: Comparing protocol composition frameworks. In Proceedings of the 22nd International Symposium on Reliable Distributed Systems, IEEE, Florence, Italy, pp.189-198, 2003.
    [20] M. Kannan, E. Komp, G. Minden. Design and Implementation of Composite Protocols, Technical Report, Department of Electrical Engineering and Computer Science, Anna University, Chennai, India, 1997.
    [21] N. Vatanski, J. P. Georges, C. Aubrun, E. Rondeau, S. L. J. Jounela. Networked control with delay measurement and estimation. Control Engineering Practice, vol.17, no.2, pp.231-244, 2009.
    [22] F. L. Lian, J. Moyne, D. Tilbury. Network design consideration for distributed control systems. IEEE Transactions on Control Systems Technology, vol.10, no.2, pp.297-307, 2002.
    [23] D. S. Kim, D. H. Choi, P. Mohapatra. Real-time scheduling method for networked discrete control systems. Control Engineering Practice, vol.17, no.5, pp.564-570, 2009.
    [24] F. Cen, T. Xing, K. Wu. Real-time performance evaluation of line topology switched Ethernet. International Journal of Automation and Computing, vol.5, no.4, pp.376-380, 2008.
    [25] C. J. Zhou, C. J. Xiang, H. Chen, H. J. Fang. Genetic algorithm-based dynamic reconfiguration for networked control system. Neural Computing and Applications, vol.17, no.2, pp.153-160, 2008.
    [26] G. Cena, A. Valenzano. A protocol for automatic node discovery in CANopen networks. IEEE Transactions on Industrial Electronics, vol.50, no.3, pp.419-430, 2003.
    [27] Vector-Informatik GmbH. CANalyzer User Manual, Version 7.1, [Online], Available: http://www.vector-worldwide.com, December 17, 2010.
  • 加载中
  • [1] M. R. Rahimi Khoygani, R. Ghasemi, P. Ghayoomi. Robust Observer-based Control of Nonlinear Multi- Omnidirectional Wheeled Robot Systems via High Order Sliding-mode Consensus Protocol . International Journal of Automation and Computing, 2021, 17(): 1-15.  doi: 10.1007/s11633-020-1254-z
    [2] Taouba Rhouma, Karim Chabir, Mohamed Naceur Abdelkrim. Resilient Control for Networked Control Systems Subject to Cyber/Physical Attacks . International Journal of Automation and Computing, 2018, 15(3): 345-354.  doi: 10.1007/s11633-017-1059-x
    [3] Lei Zou, Zi-Dong Wang, Dong-Hua Zhou. Event-based Control and Filtering of Networked Systems: A Survey . International Journal of Automation and Computing, 2017, 14(3): 239-253.  doi: 10.1007/s11633-017-1077-8
    [4] Nabiha Touijer, Samira Kamoun. Robust Self-tuning Control Based on Discrete-time Sliding Mode for Auto-regressive Mathematical Model in the Presence of Unmodelled Dynamics . International Journal of Automation and Computing, 2016, 13(3): 277-284.  doi: 10.1007/s11633-015-0921-y
    [5] Yuan Ge, Yaoyiran Li. SCHMM-based Compensation for the Random Delays in Networked Control Systems . International Journal of Automation and Computing, 2016, 13(6): 643-652.  doi: 10.1007/s11633-016-1001-7
    [6] Chang-Chun Hua,  Shao-Chong Yu,  Xin-Ping Guan. Finite-time Control for a Class of Networked Control Systems with Short Time-varying Delays and Sampling Jitter . International Journal of Automation and Computing, 2015, 12(4): 448-454.  doi: 10.1007/s11633-014-0849-7
    [7] Yuan-Qing Xia,  Yu-Long Gao,  Li-Ping Yan,  Meng-Yin Fu. Recent Progress in Networked Control Systems-A Survey . International Journal of Automation and Computing, 2015, 12(4): 343-367.  doi: 10.1007/s11633-015-0894-x
    [8] Yu-Yan Zhang,  Jun-Ling Zhang,  Xiao-Yuan Luo,  Xin-Ping Guan. Sensor/Actuator Faults Detection for Networked Control Systems via Predictive Control . International Journal of Automation and Computing, 2013, 10(3): 173-180.  doi: 10.1007/s11633-013-0710-4
    [9] Zhen-Chun Wang, Yin-Tang Wen, Xiao-Yuan Luo. Quantized H Fault-tolerant Control for Networked Control Systems . International Journal of Automation and Computing, 2012, 9(4): 352-357.  doi: 10.1007/s11633-012-0655-z
    [10] Monzur Morshed,  Anthony Atkins,  Hong-Nian Yu. An Efficient and Secure Authentication Protocol for RFID Systems . International Journal of Automation and Computing, 2012, 9(3): 257-265.  doi: 10.1007/s11633-012-0642-4
    [11] Ramzi Ayadi, Bouraoui Ouni, Abdellatif Mtibaa. A Partitioning Methodology That Optimizes the Communication Cost for Reconfigurable Computing Systems . International Journal of Automation and Computing, 2012, 9(3): 280-287.  doi: 10.1007/s11633-012-0645-1
    [12] Xiao-Ming Tang,  Bao-Cang Ding. Design of Networked Control Systems with Bounded Arbitrary Time Delays . International Journal of Automation and Computing, 2012, 9(2): 182-190.  doi: 10.1007/s11633-012-0632-6
    [13] Chang-Chun Hua, Ying Zheng, Xin-Ping Guan. Modeling and Control for Wireless Networked Control System . International Journal of Automation and Computing, 2011, 8(3): 357-363.  doi: 10.1007/s11633-011-0592-2
    [14] Xiu-Lan Wang, Chun-Guo Fei, Zheng-Zhi Han. Adaptive Predictive Functional Control for Networked Control Systems with Random Delays . International Journal of Automation and Computing, 2011, 8(1): 62-68.  doi: 10.1007/s11633-010-0555-z
    [15] Ming-Yue Zhao, He-Ping Liu, Zhi-Jun Li, De-Hui Sun. Fault Tolerant Control for Networked Control Systems with Packet Loss and Time Delay . International Journal of Automation and Computing, 2011, 8(2): 244-253.  doi: 10.1007/s11633-011-0579-z
    [16] Zhi-Sheng Chen, Yong He, Min Wu. Robust Fuzzy Tracking Control for Nonlinear Networked Control Systems with Integral Quadratic Constraints . International Journal of Automation and Computing, 2010, 7(4): 492-499.  doi: 10.1007/s11633-010-0532-6
    [17] Jun Ren,  Chun-Wen Li,  De-Zong Zhao. Linearizing Control of Induction Motor Based on Networked Control Systems . International Journal of Automation and Computing, 2009, 6(2): 192-197.  doi: 10.1007/s11633-009-0192-6
    [18] Xian-Ming Tang,  Jin-Shou Yu. Feedback Scheduling of Model-based Networked Control Systems with Flexible Workload . International Journal of Automation and Computing, 2008, 5(4): 389-394.  doi: 10.1007/s11633-008-0389-0
    [19] Mohammad Shahidul Hasan,  Christopher Harding,  Hongnian Yu,  Alison Griffiths. Modeling Delay and Packet Drop in Networked Control Systems Using Network Simulator NS2 . International Journal of Automation and Computing, 2005, 2(2): 187-194.  doi: 10.1007/s11633-005-0187-x
    [20] Shumei Mu, Tianguang Chu, Long Wang, Wensheng Yu. Output Feedback Control of Networked Systems . International Journal of Automation and Computing, 2004, 1(1): 26-34.  doi: 10.1007/s11633-004-0026-5
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5870) PDF downloads (3083) Citations (0)

Self-organization of Reconfigurable Protocol Stack for Networked Control Systems

Fund Project:

This work was supported by National Natural Science Foundation of China (No.60674081, No.60834002, No.61074145).

Abstract: In networked control systems (NCS), the control performance depends on not only the control algorithm but also the communication protocol stack. The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack. In this paper, a novel architecture for the reconfigurable protocol stack is proposed, which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards. Within the architecture, a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack. Especially, the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode, routing and scheduling table. Finally, the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN). The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.

Chun-Jie Zhou, Hui Chen, Yuan-Qing Qin, Yu-Feng Shi and Guang-Can Yu. Self-organization of Reconfigurable Protocol Stack for Networked Control Systems. International Journal of Automation and Computing, vol. 8, no. 2, pp. 221-235, 2011. doi: 10.1007/s11633-011-0577-1
Citation: Chun-Jie Zhou, Hui Chen, Yuan-Qing Qin, Yu-Feng Shi and Guang-Can Yu. Self-organization of Reconfigurable Protocol Stack for Networked Control Systems. International Journal of Automation and Computing, vol. 8, no. 2, pp. 221-235, 2011. doi: 10.1007/s11633-011-0577-1
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return