Volume 8 Number 2
May 2011
Article Contents
Xue-Li Wu, Xiao-Jing Wu, Xiao-Yuan Luo and Quan-Min Zhu. Design of Observer-based Adaptive Controller for Nonlinear Systems with Unmodeled Dynamics and Actuator Dead-zone. International Journal of Automation and Computing, vol. 8, no. 2, pp. 201-208, 2011. doi: 10.1007/s11633-011-0574-4
Cite as: Xue-Li Wu, Xiao-Jing Wu, Xiao-Yuan Luo and Quan-Min Zhu. Design of Observer-based Adaptive Controller for Nonlinear Systems with Unmodeled Dynamics and Actuator Dead-zone. International Journal of Automation and Computing, vol. 8, no. 2, pp. 201-208, 2011. doi: 10.1007/s11633-011-0574-4

Design of Observer-based Adaptive Controller for Nonlinear Systems with Unmodeled Dynamics and Actuator Dead-zone

  • Received: 2010-05-04
Fund Project:

This work was supported by National Natural Science Foundation of China (No.60704009).

  • This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone. By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input, the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness. Only one adaptive parameter is needed no matter how many unknown parameters there are. The system investigated is more general and there is no need to solve Linear matrix inequality (LMI). Moreover, with our method, some assumptions imposed on nonlinear terms and dead-zone input are relaxed. Finally, simulations illustrate the effectiveness of the proposed adaptive control scheme.
  • 加载中
  • [1] S. S. Ge, F. Hong, T. H. Lee. Robust adaptive control of nonlinear systems with unknown time delays. Automatica, vol.41, no.7, pp.1181-1190, 2005.
    [2] C. C. Hua, G. Feng, X. P. Guan. Robust controller design of a class of nonlinear time delays via backstepping method. Automatica, vol.44, no.2, pp.567-573, 2008.
    [3] X. H. Jiao, T. L. Shen. Adaptive feedback control of nonlinear time-delay systems: The LaSalle-Razumikhin-based approach. IEEE Transactions on Automatic Control, vol.50, no.11, pp.1909-1913, 2005.
    [4] X. H. Jiao, T. L. Shen, Y. Z. Sun. Further results on robust stabilization for uncertain nonlinear time-delay systems. Acta Automatica Scinica, vol.33, no.2, pp.164-169, 2007.
    [5] C. C. Hua, X. P. Guan, P. Shi. Robust backstepping control for a class of time delayed systems. IEEE Transactions on Automatic Control, vol.50, no.6, pp.894-899, 2005.
    [6] C. C. Hua, F. L. Li, X. P. Guan. Observer-based adaptive control for uncertain time-delay systems. Information Sciences, vol.176, no.2, pp.201-214, 2006.
    [7] L. G. Wu, C. H. Wang, Q. S. Zeng. Observer-based sliding mode control for a class of uncertain nonlinear neutral delay systems. Journal of Franklin Institute, vol.345, no.3, pp.233-253, 2008.
    [8] S. C. Tong, N. Sheng. Adaptive fuzzy observer backstepping control for a class of uncertain nonlinear systems with unknown time-delay. International Journal of Automation and Computing, vol.7, no.2, pp.236-246, 2010.
    [9] X. Y. Luo, Z. H. Zhu, X. P. Guan. Adaptive fuzzy dynamics surface control for uncertain nonlinear systems. International Journal of Automation and Computing, vol.6, no.4, pp.385-390, 2009.
    [10] Z. H. Mao, B. Jiang, P. Shi. Observer based fault-tolerant control for a class of nonlinear networked control systems. Journal of the Franklin Institute, vol.347, no.6, pp.940-956, 2010.
    [11] C. E. Rohrs, L. Valavani, M. Athans, G. Stein. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Transactions on Automatic Control, vol.30, no.9, pp.881-889, 1985.
    [12] M. Krstic, J. Sun, P. V. Kokotovic. Robust control of nonlinear systems with input unmodeled dynamics. IEEE Transactions on Automatic Control, vol.41, no.6, pp.913-920, 1996.
    [13] Y. S. Liu, X. Y. Li. Decentralized robust adaptive control of nonlinear systems with unmodeled dynamics. IEEE Transactions on Automatic control, vol.47, no.5, pp.848-856, 2002.
    [14] S. C. Tong, Y. M. Li, P. Shi. Fuzzy adaptive backstepping robust control for SISO nonlinear systems with dynamics uncertainties. Information Science, vol.179, no.9, pp.1319-1332, 2009.
    [15] S. C. Tong, X. L. He, Y. M. Li. Direct adaptive fuzzy backstepping robust control for signal input and signal output uncertain nonlinear systems using small-gain approach. Information Science, vol.180, no.9, pp.1738-1758, 2010.
    [16] D. Wang, J. L. Huang, W. Y. Lan, X. Q. Li. Neural network-based robust adaptive control of nonlinear systems with unmodeled dynamics. Mathematics and Computers in Simulation, vol.79, no.5, pp.1745-1753, 2009.
    [17] Z. P. Jiang, L. Praly. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica, vol.34, no.7, pp.825-840, 1998.
    [18] Z. P. Jiang. A combined backstepping and small-gain approach to adaptive output feedback control. Automatica, vol.35, no.6, pp.1131-1139, 1999.
    [19] C. C. Hua, X. P. Guan, P. Shi. Robust output feedback tracking control for time-delay nonlinear systems using neural network. IEEE Transactions on Neural Networks, vol.18, no.2, pp.495-505, 2007.
    [20] C. C. Hua, X. P. Guan. Output feedback stabilization for time-delay nonlinear interconnected systems using neural networks. IEEE Transactions on Neural Networks, vol.19, no.4, pp.673-688, 2008.
    [21] G. Tao, P. V. Kokotovic. Adaptive control of plants with unknown dead-zones. IEEE Transactions on Automatica Control, vol.39, no.1, pp.59-68, 1994.
    [22] G. Tao, M. Tian, Y. Ling. Adaptive dead-zone inverse for nonlinear plants. In Proceedings of the 35th Conference on Decision and Control, IEEE, Kobe, Japan, vol.4, pp.4381-4386, 1996.
    [23] X. S. Wang, C. Y. Su, H. Hong. Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica, vol.40, no.3, pp.407-413, 2004.
    [24] S. Ibrir, W. F. Xie, C. Y. Su. Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica, vol.43, no.3, pp.522-530, 2007.
    [25] C. C. Hua, Q. G. Wang, X. P. Guan. Adaptive tracking controller design of nonlinear systems with time-delays and unknown dead-zone input. IEEE Transactions on Automatic Control, vol.53, no.7, pp.1753-1759, 2008.
    [26] S. Bowong, J. J. Tewa. Unknown inputs adaptive observer for a class of chaotic systems with uncertainties. Mathematical and Computer Modelling, vol.48, no.11-12, pp.1826-1839, 2008.
  • 加载中
  • [1] Gao-Wei Zhang, Peng Yang, Jie Wang, Jian-Jun Sun, Yan Zhang. Integrated Observer-based Fixed-time Control with Backstepping Method for Exoskeleton Robot . International Journal of Automation and Computing, 2020, 17(1): 71-82.  doi: 10.1007/s11633-019-1201-z
    [2] Noussaiba Gasmi, Assem Thabet, Mohamed Aoun. New LMI Conditions for Reduced-order Observer of Lipschitz Discrete-time Systems: Numerical and Experimental Results . International Journal of Automation and Computing, 2019, 16(5): 644-654.  doi: 10.1007/s11633-018-1160-9
    [3] Chang-Fan Zhang, Yuan-Yuan Xiao, Jing He, Min Yan. Improvement of Electronic Line-shafting Control in Multi-axis Systems . International Journal of Automation and Computing, 2018, 15(4): 474-481.  doi: 10.1007/s11633-016-1031-1
    [4] Hfaïedh Kaïs, Dahech Karim, Damak Tarak. A Sliding Mode Observer for Uncertain Nonlinear Systems Based on Multiple Models Approach . International Journal of Automation and Computing, 2017, 14(2): 202-212.  doi: 10.1007/s11633-016-0970-x
    [5] Yi-Heng Wei,  Zhen-Yuan Sun,  Yang-Sheng Hu,  Yong Wang. On Fractional Order Adaptive Observer . International Journal of Automation and Computing, 2015, 12(6): 664-670.  doi: 10.1007/s11633-015-0929-3
    [6] Chia-Chi Tsui. Observer Design—A Survey . International Journal of Automation and Computing, 2015, 12(1): 50-61.  doi: 10.1007/s11633-014-0865-7
    [7] Hamid Dahmani,  Mohammed Chadli,  Abdelhamid Rabhi,  Ahmed El Hajjaji. Detection of Impending Vehicle Rollover with Road Bank Angle Consideration Using a Robust Fuzzy Observer . International Journal of Automation and Computing, 2015, 12(1): 93-101.  doi: 10.1007/s11633-014-0836-z
    [8] Teerawat Sangpet,  Suwat Kuntanapreeda,  Rüdiger Schmidt. Hysteretic Nonlinearity Observer Design Based on Kalman Filter for Piezo-actuated Flexible Beams with Control Applications . International Journal of Automation and Computing, 2014, 11(6): 627-634.  doi: 10.1007/s11633-014-0817-2
    [9] Hai-Gang Guo,  Bao-Jie Zhang. Observer-based Variable Universe Adaptive Fuzzy Controller Without Additional Dynamic Order . International Journal of Automation and Computing, 2014, 11(4): 418-425.  doi: 10.1007/s11633-014-0808-3
    [10] Hassan A. Yousef, Mohamed Hamdy. Observer-based Adaptive Fuzzy Control for a Class of Nonlinear Time-delay Systems . International Journal of Automation and Computing, 2013, 10(4): 275-280.  doi: 10.1007/s11633-013-0721-1
    [11] Imen Haj Brahim, Maha Bouattour, Driss Mehdi, Mohamed Chaabane, Ghani Hashim. Sensor Faults Observer Design with H Performance for Non-linear T-S systems . International Journal of Automation and Computing, 2013, 10(6): 563-570.  doi: 10.1007/s11633-013-0754-5
    [12] State Observer Based Dynamic Fuzzy Logic System for a Class of SISO Nonlinear Systems . International Journal of Automation and Computing, 2013, 10(2): 118-124.  doi: 10.1007/s11633-013-0704-2
    [13] Hossein Beikzadeh, Hamid D. Taghirad. Exponential Nonlinear Observer Based on the Differential State-dependent Riccati Equation . International Journal of Automation and Computing, 2012, 9(4): 358-368.  doi: 10.1007/s11633-012-0656-y
    [14] Lei-Po Liu,  Zhu-Mu Fu,  Xiao-Na Song. Sliding Mode Control with Disturbance Observer for Class of Nonlinear Systems . International Journal of Automation and Computing, 2012, 9(5): 487-491.  doi: 10.1007/s11633-012-0671-z
    [15] Kamel Mohamed, Mohammed Chadli, Mohamed Chaabane. Unknown Inputs Observer for a Class of Nonlinear Uncertain Systems: An LMI Approach . International Journal of Automation and Computing, 2012, 9(3): 331-336.  doi: 10.1007/s11633-012-0652-2
    [16] Observer Design for Systems with Time-delayed States . International Journal of Automation and Computing, 2012, 9(1): 105-107.  doi: 10.1007/s11633-012-0622-8
    [17] Lin-Na Zhou, Chun-Yu Yang, Qing-Ling Zhang. Observers for Descriptor Systems with Slope-restricted Nonlinearities . International Journal of Automation and Computing, 2010, 7(4): 472-478.  doi: 10.1007/s11633-010-0529-1
    [18] Fatima El Haoussi,  El Houssaine Tissir. Robust H Controller Design for Uncertain Neutral Systems via Dynamic Observer Based Output Feedback . International Journal of Automation and Computing, 2009, 6(2): 164-170.  doi: 10.1007/s11633-009-0164-x
    [19] J Chen,  E Prempain,  Q H Wu. Observer-Based Nonlinear Control of A Torque Motor with Perturbation Estimation . International Journal of Automation and Computing, 2006, 3(1): 84-90.  doi: 10.1007/s11633-006-0084-y
    [20] Min-Ze Chen,  Qi Zhao,  Dong-Hua Zhou. A Robust Fault Detection Approach for Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(1): 23-28.  doi: 10.1007/s11633-006-0023-y
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (5734) PDF downloads (4871) Citations (0)

Design of Observer-based Adaptive Controller for Nonlinear Systems with Unmodeled Dynamics and Actuator Dead-zone

Fund Project:

This work was supported by National Natural Science Foundation of China (No.60704009).

Abstract: This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone. By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input, the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness. Only one adaptive parameter is needed no matter how many unknown parameters there are. The system investigated is more general and there is no need to solve Linear matrix inequality (LMI). Moreover, with our method, some assumptions imposed on nonlinear terms and dead-zone input are relaxed. Finally, simulations illustrate the effectiveness of the proposed adaptive control scheme.

Xue-Li Wu, Xiao-Jing Wu, Xiao-Yuan Luo and Quan-Min Zhu. Design of Observer-based Adaptive Controller for Nonlinear Systems with Unmodeled Dynamics and Actuator Dead-zone. International Journal of Automation and Computing, vol. 8, no. 2, pp. 201-208, 2011. doi: 10.1007/s11633-011-0574-4
Citation: Xue-Li Wu, Xiao-Jing Wu, Xiao-Yuan Luo and Quan-Min Zhu. Design of Observer-based Adaptive Controller for Nonlinear Systems with Unmodeled Dynamics and Actuator Dead-zone. International Journal of Automation and Computing, vol. 8, no. 2, pp. 201-208, 2011. doi: 10.1007/s11633-011-0574-4
Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return