Volume 5 Number 1
January 2008
Article Contents
Computational Intelligence and Games:Challenges and Opportunities. International Journal of Automation and Computing, vol. 5, no. 1, pp. 45-57, 2008. doi: 10.1007/s11633-008-0045-8
Cite as: Computational Intelligence and Games:Challenges and Opportunities. International Journal of Automation and Computing, vol. 5, no. 1, pp. 45-57, 2008. doi: 10.1007/s11633-008-0045-8

Computational Intelligence and Games:Challenges and Opportunities

  • Received: 2007-09-24
  • The last few decades have seen a phenomenal increase in the quality,diversity and pervasiveness of computer games.The worldwide computer games market is estimated to be worth around USD 21bn annually,and is predicted to continue to grow rapidly. This paper reviews some of the recent developments in applying computational intelligence(CI)methods to games,points out some of the potential pitfalls,and suggests some fruitful directions for future research.
  • 加载中
  • [1] J.Schaeffer,N.Burch,Y.Bj(o)rnsson,A.Kishimoto,M.Müller,R.Lake,P.Lu,S.Sutphen.Checkers Is Solved.Science,vol.317,no.5844,pp.1518-1522,2007.
    [2] K.Chellapilla,D.B.Fogel.Evolving an Expert Checkers Playing Program without Using Human Expertise.IEEE Transactions on Evolutionary Computation,vol.5,no.4,pp.422-428,2001.
    [3] D.B.Fogel,T.J.Hays,S.L.Hahn,J.Quon.An Evolutionary Self-learning Chess Program.Proceedings of the IEEE,vol.92,no.12,pp.1947-1954,2004.
    [4] S.Gelly,Y.Wang,R.Munos,O.Teytaud.Modification of UCT with Patterns in Monte-Carlo Go,Technical Report 6062,INRIA,France,2006.
    [5] Y.Wang,S.Gelly.Modifications of UCT and Sequence-like Simulations for Monte-Carlo Go.In Proceedings of IEEE Symposium on Computational Intelligence and Games,IEEE Press,pp.175 182,2007.
    [6] E.Charniak.Statistical Language Learning,MIT Press,Cambrige,Massachusetts,USA,1996.
    [7] S.Colton,P.Cowling,S.M.Lucas.An Industry/Academia Research Network on Artificial Intelligence and Games Technologies,Technical Report EP/F033834,EPSRC,Swindon,2007.
    [8] M.Buro.ProbCut:An Effective Selective Extension of the Aalpha-Beta Algorithm.ICCA Journal,vol.18,no.2,pp.71-76,1995.
    [9] T.Gosling,N.Jin,E.Tsang.Games,Supply Chains and Automatic Strategy Discovery Using Evolutionary Computation.Handbook of Research on Nature-inspired Computing for Economics and Management,J.P.Rennard (ed.),vol.2,pp.572 588,2007.
    [10] K.O.Stanley,B.D.Bryant,R.Miikkulainen.Real-time Neuroevolution in the NERO Video Game.IEEE Transactions on Evolutionary Computation,vol.9,no.6,pp.653-668,2005.
    [11] R.M.Axelrod.The Evolution of Cooperation,Basic Books Inc.,New York,USA,1984.
    [12] N.Jin,E.Tsang.Co-adaptive Strategies for Sequential Bargaining Problems with Discount Factors and Outside Options.In Proceedings of Congress on Evolutionary Computation,Vancouver,BC,Canada,pp.2149-2156,2006.
    [13] D.Cliff.Minimal-intelligence Agents for Bargaining Behaviors in Market-based Environments,Technical Report HPL-97-91 970811,Hewlett Packard Laboratories,USA,1997.
    [14] D.K.Gode,S.Sunder.Allocative Efficiency of Markets with Zero-intelligence Traders:Market as a Partial Substitute for Individual Rationality.The Journal of Political Economy,vol.101,no.1,pp.119-137,1993.
    [15] D.Cliff.Explorations in Evolutionary Design of Online Auction Market Mechanisms.Journal of Electronic Commerce Research and Applications,vol.2,no.2,pp.162-175,2003.
    [16] A.Moore.Efficient Memory-based Learning for Robot Control,Ph.D.dissertation,University of Cambridge,UK,1990.
    [17] R.Sutton and A.Barto.Introduction to Reinforcement Learning,MIT Press,Cambridge,MA,USA,1998.
    [18] S.Whiteson,P.Stone.Evolutionary Function Approximation for Reinforcement Learning.Journal of Machine Learning Research,vol.7,pp.877-917,2006.
    [19] G.Tesauro.Temporal Difference Learning and TD-gammon.Communications of the ACM,vol.38,no.3,pp.58-68,1995.
    [20] J.B.Pollack,A.D.Blair.Co-evolution in the Successful Learning of Backgammon Strategy.Machine Learning,vol.32,no.3,pp.225-240,1998.
    [21] G.Tesauro.Comments on "Co-Evolution in the Successful Learning of Backgammon Strategy".Machine Learning,vol.32,no.3,pp.241-243,1998.
    [22] P.J.Darwen.Why Co-evolution Beats Temporal Difference Learning at Backgammon for a Linear Architecture,but not a Non-linear Architecture.In Proceedings of Congress on Evolutionary Computation,IEEE Press,vol.2,pp.1003-1010,2001.
    [23] T.P.Runarsson,S.M.Lucas.Co-evolution versus Selfplay Temporal Difference Learning for Acquiring Position Evaluation in Small-board Go.IEEE Transactions on Evolutionary Computation,vol.9,no.6,pp.628-640,2005.
    [24] S.M.Lucas,T.P.Runarsson.Temporal Difference Learning versus Co-evolution for Acquiring Othello Position Evaluation.In Proceedings of IEEE Symposium on Computational Intelligence and Games,Reno/Lake Tahoe,USA,pp.53-59,2006.
    [25] C.Kotnik,J.Kalita.The Significance of Temporaldifference Learning in Self-play Training:TD-rummy versus EVO-rummy.In Proceedings of the International Conference on Machine Learning,Washington D.C.,USA,pp.369-375.2003.
    [26] M.E.Taylor,S.Whiteson,P.Stone.Comparing Evolutionary and Temporal Difference Methods in a Reinforcement Learning Domain.In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,Seattle,Washington,USA,pp.1321-1328,2006.
    [27] F.Gomez,J.Schmidhuber,R.Miikkulainen.Efficient Nonlinear Control through Neuroevolution.In Proceedings of the European Conference on Machine Learning,Lecture Notes in Computer Science,vol.4212,pp.654-662,2006.
    [28] S.M.Lucas,J.Togelius.Point-to-point Car Racing:An Initial Study of Evolution versus Temporal Difference Learning.In Proceedings of IEEE Symposium on Computational Intelligence and Games,Westin Harbour Castle Toronto,Ontario Canada,pp.260-267,2007.
    [29] K.-F.Lee,S.Mahajan.A Pattern Classification Approach to Evaluation Function Learning.Artificial Intelligence,vol.36,no.1,pp.1-25,1988.
    [30] K.-F.Lee,S.Mahajan.The Development of a World Class Othello Program.Artificial Intelligence,vol.43,no.1,pp.21-36,1990.
    [31] M.Buro.LOGISTELLO-A Strong Learning Othello Program.NEC Research Institute,Princeton,NJ,1997,[Online] ,Available:http://www.cs.ualberta.ca/~mburo/ps/log-overview.ps.gz.
    [32] S.Y.Chong,M.K.Tan,J.D.White.Observing the Evolution of Neural Networks Learning to Play the Game of Othello.IEEE Transactions on Evolutionary Computation,vol.9,no.3,pp.240-251,2005.
    [33] W.W.Bledsoe,I.Browning.Pattern Recognition and Reading by Machine.In Proceedings of the Eastern Joint Computer Conference,pp.225-232.1959.
    [34] J.Ullman.Experiments with the n-tuple Method of Pattern Recognition.IEEE Transactions on Computers,vol.18,no.12,pp.1135-1137,1969.
    [35] R.Rohwer,M.Morciniec.A Theoretical and Experimental Account of n-tuple Classifier Performance.Neural Computation,vol.8,no.3,pp.629-642,1996.
    [36] B.Chaperot,C.Fyfe.Improving Artificial Intelligence in a Motocross Game.In Proceedings of IEEE Symposium on Computational Intelligence and Games,Reno/Lake Tahoe,USA,pp.181-186,2006.
    [37] D.Floreano,T.Kato,D.Marocco,E.Sauser.Coevolution of Active Vision and Feature Selection.Biological Cybernetics,vol.90,no.3,pp.218-228,2004.
    [38] S.Thrun,M.Montemerlo,H.Dahlkamp,D.Stavens,A.Aron,J.Diebel,P.Fong,J.Gale,M.Halpenny,G.Hoffmann,K.Lau,C.Oakley,M.Palatucci,V.Pratt,P.Stang,S.Strohband,C.Dupont,L.-E.Jendrossek,C.Koelen,C.Markey,C.Rummel,J.van Niekerk,E.Jensen,P.Alessandrini,G.Bradski,B.Davies,S.Ettinger,A.Kaehler,A.Nefian,and P.Mahoney.The Robot that Won the DARPA Grand Challenge.Journal of Field Robotics,vol.23,no.9,pp.661-692,2006.
    [39] I.Tanev,M.Joachimczak,H.Hemmi,K.Shimohara.Evolution of the Driving Styles of Anticipatory Agent Remotely Operating a Scaled Model of Racing Car.In Proceedings of IEEE Congress on Evolutionary Computation,vol.2,pp.1891-1898,2005.
  • 加载中
  • [1] Fu-Qiang Liu, Zong-Yi Wang. Automatic “Ground Truth” Annotation and Industrial Workpiece Dataset Generation for Deep Learning . International Journal of Automation and Computing, 2020, 17(4): 539-550.  doi: 10.1007/s11633-020-1221-8
    [2] Bin Hu, Jiacun Wang. Deep Learning Based Hand Gesture Recognition and UAV Flight Controls . International Journal of Automation and Computing, 2020, 17(1): 17-29.  doi: 10.1007/s11633-019-1194-7
    [3] Maryam Aljanabi, Mohammad Shkoukani, Mohammad Hijjawi. Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Study in Amman, Jordan . International Journal of Automation and Computing, 2020, 17(): 1-11.  doi: 10.1007/s11633-020-1233-4
    [4] Ya-Jun Li, Zhao-Wen Huang, Jing-Zhao Li. H State Estimation for Stochastic Markovian Jumping Neural Network with Time-varying Delay and Leakage Delay . International Journal of Automation and Computing, 2019, 16(3): 329-340.  doi: 10.1007/s11633-016-0955-9
    [5] Zhen-Jie Yao, Jie Bi, Yi-Xin Chen. Applying Deep Learning to Individual and Community Health Monitoring Data: A Survey . International Journal of Automation and Computing, 2018, 15(6): 643-655.  doi: 10.1007/s11633-018-1136-9
    [6] Na Duan, Hui-Fang Min. NN-based Output Tracking for More General Stochastic Nonlinear Systems with Unknown Control Coefficients . International Journal of Automation and Computing, 2017, 14(3): 350-359.  doi: 10.1007/s11633-015-0936-4
    [7] Nesrine Bahri, Asma Atig, Ridha Ben Abdennour, Fabrice Druaux, Dimitri Lefebvre. A Systematic Design of Emulators for Multivariable Non Square and Nonlinear Systems . International Journal of Automation and Computing, 2017, 14(6): 742-754.  doi: 10.1007/s11633-016-0963-9
    [8] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, Qianli Liao. Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality:A Review . International Journal of Automation and Computing, 2017, 14(5): 503-519.  doi: 10.1007/s11633-017-1054-2
    [9] Danko Nikolić. Why Deep Neural Nets Cannot Ever Match Biological Intelligence and What To Do About It? . International Journal of Automation and Computing, 2017, 14(5): 532-541.  doi: 10.1007/s11633-017-1093-8
    [10] S. Arumugadevi, V. Seenivasagam. Color Image Segmentation Using Feedforward Neural Networks with FCM . International Journal of Automation and Computing, 2016, 13(5): 491-500.  doi: 10.1007/s11633-016-0975-5
    [11] Xiao-Cheng Shi,  Tian-Ping Zhang. Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems with Time-varying Delays and Unmodeled Dynamics . International Journal of Automation and Computing, 2013, 10(3): 194-201.  doi: 10.1007/s11633-013-0712-2
    [12] Fusaomi Nagata, Keigo Watanabe. Adaptive Learning with Large Variability of Teaching Signals for Neural Networks and Its Application to Motion Control of an Industrial Robot . International Journal of Automation and Computing, 2011, 8(1): 54-61.  doi: 10.1007/s11633-010-0554-0
    [13] Yuan-Yuan Wu, Tao Li, Yu-Qiang Wu. Improved Exponential Stability Criteria for Recurrent Neural Networks with Time-varying Discrete and Distributed Delays . International Journal of Automation and Computing, 2010, 7(2): 199-204.  doi: 10.1007/s11633-010-0199-z
    [14] Siva S. Sivatha Sindhu, S. Geetha, M. Marikannan, A. Kannan. A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction System . International Journal of Automation and Computing, 2009, 6(4): 406-414.  doi: 10.1007/s11633-009-0406-y
    [15] Ahcene Boubakir, Fares Boudjema, Salim Labiod. A Neuro-fuzzy-sliding Mode Controller Using Nonlinear Sliding Surface Applied to the Coupled Tanks System . International Journal of Automation and Computing, 2009, 6(1): 72-80.  doi: 10.1007/s11633-009-0072-0
    [16] Jane M. Binner, Alicia M. Gazely, Graham Kendall. Evaluating the Performance of a EuroDivisia Index Using Artificial Intelligence Techniques . International Journal of Automation and Computing, 2008, 5(1): 58-62.  doi: 10.1007/s11633-008-0058-3
    [17] Alma Lilia Garcia-Almanza,  Edward P. K. Tsang. Evolving Decision Rules to Predict Investment Opportunities . International Journal of Automation and Computing, 2008, 5(1): 22-31.  doi: 10.1007/s11633-008-0022-2
    [18] Mohamed-Faouzi Harkat,  Salah Djelel,  Noureddine Doghmane,  Mohamed Benouaret. Sensor Fault Detection, Isolation and Reconstruction Using Nonlinear Principal Component Analysis . International Journal of Automation and Computing, 2007, 4(2): 149-155.  doi: 10.1007/s11633-007-0149-6
    [19] Modelling and Multi-Objective Optimal Control of Batch Processes Using Recurrent Neuro-fuzzy Networks . International Journal of Automation and Computing, 2006, 3(1): 1-7.  doi: 10.1007/s11633-006-0001-4
    [20] L. Meng,  Q. H. Wu. Fast Training of Support Vector Machines Using Error-Center-Based Optimization . International Journal of Automation and Computing, 2005, 2(1): 6-12.  doi: 10.1007/s11633-005-0006-4
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Abstract Views (4122) PDF downloads (4022) Citations (0)

Computational Intelligence and Games:Challenges and Opportunities

Abstract: The last few decades have seen a phenomenal increase in the quality,diversity and pervasiveness of computer games.The worldwide computer games market is estimated to be worth around USD 21bn annually,and is predicted to continue to grow rapidly. This paper reviews some of the recent developments in applying computational intelligence(CI)methods to games,points out some of the potential pitfalls,and suggests some fruitful directions for future research.

Computational Intelligence and Games:Challenges and Opportunities. International Journal of Automation and Computing, vol. 5, no. 1, pp. 45-57, 2008. doi: 10.1007/s11633-008-0045-8
Citation: Computational Intelligence and Games:Challenges and Opportunities. International Journal of Automation and Computing, vol. 5, no. 1, pp. 45-57, 2008. doi: 10.1007/s11633-008-0045-8
Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return