Volume 3 Number 2
April 2006
Article Contents
A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree. International Journal of Automation and Computing, vol. 3, no. 2, pp. 151-156, 2006. doi: 10.1007/s11633-006-0151-4
Cite as: A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree. International Journal of Automation and Computing, vol. 3, no. 2, pp. 151-156, 2006.

# A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree

• Minimal cut sets (or prime implicants: minimal combinations of basic event conditions leading to system failure) are important information for reliability/safety analysis and design. To obtain minimal cut sets for general non-coherent fault trees, including negative basic events or multi-valued basic events, a special procedure such as the consensus rule must be applied to the results obtained by logical operations for coherent fault trees, which will require more steps and time. This paper proposes a simple method for a non-coherent fault tree, whose top event is represented as an AND combination of monotonic sub-trees. A monotonic sub-tree means that it does not have both positive and negative representations for each basic event. It is proven that minimal cut sets can be obtained by a conventional method for coherent fault trees. An illustrative example of a simple event tree analysis shows the detail and characteristics of the proposed method.
•  [1] W.E.Vesely,F.F.Goldberg,N.H.Roberts,D.F.Haasl.Fault Tree Handbook,United States Nuclear Regulatory Commission,NUREG-0492,1981. [2] W.V.Quine.The Problem of Simplifying Truth Functions.American Mathematical Monthly,vol.59,no.8,pp.521-531,1952. [3] W.V.Quine.A Way to Simplify Truth Functions.American Mathematical Monthly,vol.62,no.9,pp.627-631,1955. [4] R.E.Barlow,F.Proschan.Statistical Theory of Reliability and Life Testing,Probability Models,Holt,Rinehart and Winston,New York,1975. [5] E.J.Henley,H.Kumamoto.Probabilistic Risk Assessment,Reliability Engineering,Design,and Analysis,IEEE Press,New York,1992. [6] J.B.Fussell,E.B.Henry,N.H.Marshall.MOCUS:A Computer Program to Obtain Minimal Cut Sets from Fault Trees.Aerojet Nuclear Company,ANCR-1156,1974. [7] T.Nicolescu,R.Weber.Reliability of Systems with Various Functions.Reliability Engineering,vol.2,no.2,pp.147-157,1981. [8] R.J.Nelson.Simplest Normal Truth Functions.Journal of Symbolic Logic,vol.2,no.2,pp.105-108,1955.
•  [1] Erphan A. Bhuiyan, Md. Maeenul Azad Akhand, Sajal K. Das, Md. F. Ali, Z. Tasneem, Md. R. Islam, D. K. Saha, Faisal R. Badal, Md. H. Ahamed, S. I. Moyeen. A Survey on Fault Diagnosis and Fault Tolerant Methodologies for Permanent Magnet Synchronous Machines . International Journal of Automation and Computing, 2020, 17(6): 763-787.  doi: 10.1007/s11633-020-1250-3 [2] Younes Solgi, Alireza Fatehi, Ala Shariati. Novel Non-monotonic Lyapunov-Krasovskii Based Stability Analysis and Stabilization of Discrete State-delay System . International Journal of Automation and Computing, 2020, 17(5): 713-732.  doi: 10.1007/s11633-020-1222-7 [3] Ann Smith, Fengshou Gu, Andrew D. Ball. An Approach to Reducing Input Parameter Volume for Fault Classifiers . International Journal of Automation and Computing, 2019, 16(2): 199-212.  doi: 10.1007/s11633-018-1162-7 [4] Toby Walsh. Expert and Non-expert Opinion About Technological Unemployment . International Journal of Automation and Computing, 2018, 15(5): 637-642.  doi: 10.1007/s11633-018-1127-x [5] Nesrine Bahri, Asma Atig, Ridha Ben Abdennour, Fabrice Druaux, Dimitri Lefebvre. A Systematic Design of Emulators for Multivariable Non Square and Nonlinear Systems . International Journal of Automation and Computing, 2017, 14(6): 742-754.  doi: 10.1007/s11633-016-0963-9 [6] Sulaiman Ayobami Lawal, Jie Zhang. Actuator Fault Monitoring and Fault Tolerant Control in Distillation Columns . International Journal of Automation and Computing, 2017, 14(1): 80-92.  doi: 10.1007/s11633-016-1037-8 [7] Salim Ziani. New Time-varying Fuzzy Sets Based on a PSO Midpoint of the Universe of Discourse . International Journal of Automation and Computing, 2016, 13(4): 392-400.  doi: 10.1007/s11633-016-0988-0 [8] Guo-Bing Zhou, Jianxin Wu, Chen-Lin Zhang, Zhi-Hua Zhou. Minimal Gated Unit for Recurrent Neural Networks . International Journal of Automation and Computing, 2016, 13(3): 226-234.  doi: 10.1007/s11633-016-1006-2 [9] David H. Owens,  Chris T. Freeman,  Bing Chu. Generalized Norm Optimal Iterative Learning Control with Intermediate Point and Sub-interval Tracking . International Journal of Automation and Computing, 2015, 12(3): 243-253.  doi: 10.1007/s11633-015-0888-8 [10] Chandrasekaran Raja,  Narayanan Gangatharan. Appropriate Sub-band Selection in Wavelet Packet Decomposition for Automated Glaucoma Diagnoses . International Journal of Automation and Computing, 2015, 12(4): 393-401.  doi: 10.1007/s11633-014-0858-6 [11] Qing-Yu Su,  Yan-Cheng Li,  Xing-Ze Dai,  Jian Li. Fault Detection for a Class of Impulsive Switched Systems . International Journal of Automation and Computing, 2014, 11(2): 223-230.  doi: 10.1007/s11633-014-0784-7 [12] Rihem Farkh,  Kaouther Laabidi,  Mekki Ksouri. Stabilizing Sets of PI/PID Controllers for Unstable Second Order Delay System . International Journal of Automation and Computing, 2014, 11(2): 210-222.  doi: 10.1007/s11633-014-0783-8 [13] Jun Wang, Hai-Long Pei, Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure . International Journal of Automation and Computing, 2013, 10(5): 463-471.  doi: 10.1007/s11633-013-0743-8 [14] Xiao-Fen Wang, Ying-Rui Liu, Wen-Sheng Zhang. Research on Modelling Digital Paper-cut Preservation . International Journal of Automation and Computing, 2009, 6(4): 356-363.  doi: 10.1007/s11633-009-0356-4 [15] Mingcong Deng, Hongnian Yu, Akira Inoue. Decentralized PD Control for Non-uniform Motion of a Hamiltonian Hybrid System . International Journal of Automation and Computing, 2008, 5(2): 119-124.  doi: 10.1007/s11633-008-0119-7 [16] Tetsuro Morimoto, Tohru Mihashi, Katsushi Ikeuchi. Color Restoration Method Based on Spectral Information Using Normalized Cut . International Journal of Automation and Computing, 2008, 5(3): 226-233.  doi: 10.1007/s11633-008-0226-5 [17] Marek Kowal,  Józef Korbicz. Fault Detection under Fuzzy Model Uncertainty . International Journal of Automation and Computing, 2007, 4(2): 117-124.  doi: 10.1007/s11633-007-0117-1 [18] Qiang Shen,  Richard Jensen. Rough Sets,Their Extensions and Applications . International Journal of Automation and Computing, 2007, 4(3): 217-228.  doi: 10.1007/s11633-007-0217-y [19] Min-Ze Chen,  Qi Zhao,  Dong-Hua Zhou. A Robust Fault Detection Approach for Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(1): 23-28.  doi: 10.1007/s11633-006-0023-y [20] . An Evaluation of the Reliability of Complex Systems Using Shadowed Sets and Fuzzy Lifetime Data . International Journal of Automation and Computing, 2006, 3(2): 145-150.  doi: 10.1007/s11633-006-0145-2
###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

## A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree

###### 1. Department of Aeronautics and Astronautics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Abstract: Minimal cut sets (or prime implicants: minimal combinations of basic event conditions leading to system failure) are important information for reliability/safety analysis and design. To obtain minimal cut sets for general non-coherent fault trees, including negative basic events or multi-valued basic events, a special procedure such as the consensus rule must be applied to the results obtained by logical operations for coherent fault trees, which will require more steps and time. This paper proposes a simple method for a non-coherent fault tree, whose top event is represented as an AND combination of monotonic sub-trees. A monotonic sub-tree means that it does not have both positive and negative representations for each basic event. It is proven that minimal cut sets can be obtained by a conventional method for coherent fault trees. An illustrative example of a simple event tree analysis shows the detail and characteristics of the proposed method.

A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree. International Journal of Automation and Computing, vol. 3, no. 2, pp. 151-156, 2006. doi: 10.1007/s11633-006-0151-4
 Citation: A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree. International Journal of Automation and Computing, vol. 3, no. 2, pp. 151-156, 2006.
Reference (8)

/