[1] Y. C. Eldar, P. Sidorenko, D. G. Mixon, S. Barel, O. Cohen. Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Processing Letters, vol. 22, no. 5, pp. 638–642, 2015. DOI:  10.1109/LSP.2014.2364225.
[2] L. B. Almeida. The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 3084–3091, 1994. DOI:  10.1109/78.330368.
[3] A. R. Abdullah, A. Z. Sha′ameri, M. S. Norhashimah. Power quality analysis using spectrogram and gabor transformation. In Proceedings of Asia-Pacific Conference on Applied Electromagnetics, IEEE, Melaka, Malaysia, pp. 1–5, 2007. DOI:  10.1109/APACE.2007.4603964.
[4] S. H. Cho, G. Jang, S. H. Kwon. Time-frequency analysis of power-quality disturbances via the Gabor–Wigner transform. IEEE Transactions on Power Delivery, vol. 25, no. 1, pp. 494–499, 2010. DOI:  10.1109/TPWRD.2009.2034832.
[5] S. J. Huang, C. L. Huang, C. T. Hsieh. Application of Gabor transform technique to supervise power system transient harmonics. IEE Proceedings-Generation,Transmission and Distribution, vol. 143, no. 5, pp. 461–466, 1996. DOI:  10.1049/ip-gtd:19960534.
[6] L. Tao, S. Z. Yan, W. Zhang. Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform. Mechanical Systems and Signal Processing, vol. 75, pp. 228–244, 2016. DOI:  10.1016/j.ymssp.2015.12.015.
[7] P. S. Wright. Short-time Fourier transforms and Wigner-Ville distributions applied to the calibration of power frequency harmonic analyzers. IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 2, pp. 475–478, 1999. DOI:  10.1109/19.769633.
[8] J. H. Lee, J. Kim, H. J. Kim. Development of enhanced Wigner-Ville distribution function. Mechanical Systems and Signal Processing, vol. 15, no. 2, pp. 367–398, 2001. DOI:  10.1006/mssp.2000.1365.
[9] A. R. B. Abdullah, A. Z. B. Sha′ameri, B. J. Auzani. Classification of power quality signals using smooth-windowed Wigner-Ville distribution. In Proceedings of International Conference on Electrical Machines and Systems, IEEE, Incheon, South Korea, pp. 1981–1985, 2010.
[10] H. He, J. A. Starzyk. A self-organizing learning array system for power quality classification based on wavelet transform. IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 286–295, 2006. DOI:  10.1109/TPWRD.2005.852392.
[11] S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, S. C. Bhatt. Characterization of distribution power quality events with Fourier and wavelet transforms. IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 247–254, 2000. DOI:  10.1109/61.847259.
[12] R. Q. Yan, R. X. Gao, X. F. Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, vol. 96, pp. 1–15, 2014. DOI:  10.1016/j.sigpro.2013.04.015.
[13] D. De Yong, S. Bhowmik, F. Magnago. An effective power quality classifier using wavelet transform and support vector machines. Expert Systems with Applications, vol. 42, no. 15–16, pp. 6075–6081, 2015. DOI:  10.1016/j.eswa.2015.04.002.
[14] Z. K. Peng, P. W. Tse, F. L. Chu. An improved Hilbert-Huang transform and its application in vibration signal analysis. Journal of Sound and Vibration, vol. 286, no. 1–2, pp. 187–205, 2005. DOI:  10.1016/j.jsv.2004.10.005.
[15] J. H. Yan, L. Lu. Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis. Signal Processing, vol. 98, pp. 74–87, 2014. DOI:  10.1016/j.sigpro.2013.11.012.
[16] P. K. Dash, B. K. Panigrahi, G. Panda. Power quality analysis using S-transform. IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 406–411, 2003. DOI:  10.1109/TPWRD.2003.809616.
[17] P. K. Dash, B. K. Panigrahi, D. K. Sahoo, G. Panda. Power quality disturbance data compression, detection, and classification using integrated spline wavelet and S-transform. IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 595–600, 2003. DOI:  10.1109/TPWRD.2002.803824.
[18] O. P. Mahela, A. G. Shaik. Recognition of power quality disturbances using S-transform based ruled decision tree and fuzzy C-means clustering classifiers. Applied Soft Computing, vol. 59, pp. 243–257, 2017. DOI:  10.1016/j.asoc.2017.05.061.
[19] R. Kumar, B. Singh, D. T. Shahani, A. Chandra, K. Al-Haddad. Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree. IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1249–1258, 2015. DOI:  10.1109/TIA.2014.2356639.
[20] O. P. Mahela, A. G. Shaik, N. Gupta. A critical review of detection and classification of power quality events. Renewable and Sustainable Energy Reviews, vol. 41, pp. 495–505, 2015. DOI:  10.1016/j.rser.2014.08.070.
[21] H. S. Behera, P. K. Dash, B. Biswal. Power quality time series data mining using S-transform and fuzzy expert system. Applied Soft Computing, vol. 10, no. 3, pp. 945–955, 2010. DOI:  10.1016/j.asoc.2009.10.013.
[22] J. B. V. Reddy, P. K. Dash, R. Samantaray, A. K. Moharana. Fast tracking of power quality disturbance signals using an optimized unscented filter. IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 12, pp. 3943–3952, 2009. DOI:  10.1109/TIM.2009.2020835.
[23] X. Ouyang, M. G. Amin. Short-time Fourier transform receiver for nonstationary interference excision in direct sequence spread spectrum communications. IEEE Transactions on Signal Processing, vol. 49, no. 4, pp. 851–863, 2001. DOI:  10.1109/78.912929.
[24] M. Analysis of nonstationary power-quality waveforms using iterative Hilbert Huang transform and SAX algorithm. IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2134–2144, 2013. DOI:  10.1109/TPWRD.2013.2264948.
[25] Y. Huang, Y. Q. Liu, Z. P. Hong. Detection and location of power quality disturbances based on mathematical morphology and Hilbert-Huang transform. In Proceedings of the 9th International Conference on Electronic Measurement & Instruments, IEEE, Beijing, China, 2000. DOI:  10.1109/ICEMI.2009.5274596.
[26] S. Santoso, E. J. Powers, W. M. Grady, A. C. Parsons. Power quality disturbance waveform recognition using wavelet-based neural classifier. I. Theoretical foundation. IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 222–228, 2000. DOI:  10.1109/61.847255.
[27] M. Biswal, P. K. Dash. Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier. Digital Signal Processing, vol. 23, no. 4, pp. 1071–1083, 2013. DOI:  10.1016/j.dsp.2013.02.012.
[28] P. K. Dash, S. Das, J. Moirangthem. Distance protection of shunt compensated transmission line using a sparse S-transform. IET Generation,Transmission &Distribution, vol. 9, no. 12, pp. 1264–1274, 2015. DOI:  10.1049/iet-gtd.2014.1002.
[29] M. V. Chilukuri, P. K. Dash. Multiresolution S-transform- based fuzzy recognition system for power quality events. IEEE Transactions on Power Delivery, vol. 19, no. 1, pp. 323–330, 2004. DOI:  10.1109/TPWRD.2003.820180.
[30] R. A. Brown, R. Frayne. A fast discrete S-transform for biomedical signal processing. In Proceedings of the 30th Annual International Conference of IEEE Engineering in Medicine and Biology Society, IEEE, Vancouver, Canada, pp. 2586–2589, 2008. DOI:  10.1109/IEMBS.2008.4649729.
[31] R. A. Brown, M. L. Lauzon, R. Frayne. A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous S-transform spectrum nonredundantly. IEEE Transactions on Signal Processing, vol. 58, no. 1, pp. 281–290, 2010. DOI:  10.1109/TSP.2009.2028972.
[32] C. Cortes, V. Vapnik. Support-vector networks. Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. DOI:  10.1007/BF00994018.
[33] J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999. DOI:  10.1023/A:1018628609742.
[34] P. Cross, X. D. Ma. Model-based and fuzzy logic approaches to condition monitoring of operational wind turbines. International Journal of Automation and Computing, vol. 12, no. 1, pp. 25–34, 2015. DOI:  10.1007/s11633-014-0863-9.
[35] B. Biswal, P. K. Dash, B. K. Panigrahi. Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization. IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 212–220, 2009. DOI:  10.1109/TIE.2008.928111.
[36] F. Hoffmann. Combining boosting and evolutionary algorithms for learning of fuzzy classification rules. Fuzzy Sets and Systems, vol. 141, no. 1, pp. 47–58, 2004. DOI:  10.1016/S0165-0114(03)00113-1.
[37] M. Seera, C. P. Lim, C. K. Loo, H. Singh. Power quality analysis using a hybrid model of the fuzzy min-max neural network and clustering tree. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 12, pp. 2760–2767, 2016. DOI:  10.1109/TNNLS.2015.2502955.
[38] S. Khokhar, A. Asuhaimi B. Mohd Zin, A. S. B. Mokhtar, M. Pesaran. A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renewable and Sustainable Energy Reviews, vol. 51, pp. 1650–1663, 2015. DOI:  10.1016/j.rser.2015.07.068.
[39] S. Chakravarty, P. K. Dash. A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Applied Soft Computing, vol. 12, no. 2, pp. 931–941, 2012. DOI:  10.1016/j.asoc.2011.09.013.
[40] Y. Wang, X. X. Zhu. A robust design of hybrid fuzzy controller with fuzzy decision tree for autonomous intelligent parking system. In Proceedings of American Control Conference, IEEE, Portland, USA, 2014. DOI:  10.1109/ACC.2014.6859439.
[41] Y. Wang, X. X. Zhu. Hybrid fuzzy logic controller for optimized autonomous parking. In Proceedings of American Control Conference, IEEE, Washington DC, USA, 2013. DOI:  10.1109/ACC.2013.6579834.
[42] Y. Wang, X. X. Zhu. Design and implementation of an integrated multi-functional autonomous parking system with fuzzy logic controller. In Proceedings of American Control Conference, IEEE, Montreal, Canada, 2012. DOI:  10.1109/ACC.2012.6315356.
[43] S. R. Safavian, D. Landgrebe. A survey of decision tree classifier methodology. IEEE Transactions on Systems,Man,and Cybernetics, vol. 21, no. 3, pp. 660–674, 1991. DOI:  10.1109/21.97458.
[44] C. X. Dou, T. Gui, Y. F. Bi, J. Z. Yang, X. G. Li. Assessment of power quality based on D-S evidence theory. International Journal of Automation and Computing, vol. 11, no. 6, pp. 635–643, 2014. DOI:  10.1007/s11633-014-0837-y.
[45] L. F. Mendonca, S. M. Vieira, J. M. C. Sousa. Decision tree search methods in fuzzy modeling and classification. International Journal of Approximate Reasoning, vol. 44, no. 2, pp. 106–123, 2007. DOI:  10.1016/j.ijar.2006.07.004.
[46] C. Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), vol. 28, no. 1, pp. 1–14, 1998. DOI:  10.1109/3477.658573.
[47] R. Chassaing. Digital Signal Processing and Applications with the C6713 and C6416 DSK, Hoboken, USA: John Wiley & Sons, 2004.