[1] Y. He, M. Wu, J. She. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Transactions on Automatic Control, vol. 49, no. 5, pp. 828-832, 2002.
[2] X.M. Zhang, Q. L. Han. New stability criteria for linear systems with interval time-varying delay. Automatica, vol. 44, no. 10, pp. 2680-2685, 2008.
[3] S. Boyd, K. Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix Inequalities in Systems and Control Theory, vol. 15, Philadelphia: PA: SIAM, 1994.
[4] M. Wu, Y. He, J. She. Stability Analysis and Robust Control of Time-delay Systems, Beijing, China: Science Press, pp. 43-70, 2010.
[5] E. Fridman, U. Shaked. Delay-dependent stability and H control: Constant and time-varying delays. International Journal of Control, vol. 76, no. 1, pp. 48-60, 2003.
[6] E. Fridman. Stability of systems with uncertain delays: A new “complete” Lyapunov-Krasovskii functional. IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 885-890, 2006.
[7] J. M. Jiao. A stability criterion for singular systems with two additive time-varying delay components. International Journal of Automation and Computing, vol. 10, no. 1, pp. 39-45, 2013.
[8] Y. S. Lee, Y. S. Moon, W. H, Kwon, P. G. Park. Delaydependent robust H control for uncertain systems with a state-delay. Automatica, vol. 40, no. 1, pp. 65-72, 2004.
[9] Y. Moon, P. Park, W. Kwon, Y. S. Lees. Delay-dependent robust stabilization of uncertain state delayed systems. International Journal of Control, vol. 74, no. 14, pp. 1447-1455, 2001.
[10] X. M. Zhang, Q. L. Han, Novel delay-derivative-dependent stability criteria using new bounding techniques. International Journal of Robust and Nonlinear Control, vol. 23, no. 13, pp. 1419-1432, 2013.
[11] Q. L. Han. Improved stability criteria and controller design for linear neutral systems. Automatica, vol. 45, no. 8, pp. 1948-1952, 2009.
[12] Z. Zhong, Y.Wu. Globally asymptotic stabilization for nonlinear time-delay systems with ISS inverse dynamics. International Journal of Automation and Computing, vol.9, no. 6, pp. 634-640, 2012.
[13] Z. Jarvis-Wloszek, A. Packard. An LMI method to demonstrate simultaneous stability using non-quadratic polynomial Lyapunov functions. In Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, USA, pp. 287-292, 2002.
[14] J. Xu, L. H. Xie. Homogeneous polynomial lyapunov functions for piecewise affine systems. In Proceedings of the America Control Conference, IEEE, Portland, USA, pp. 581-586, 2005.
[15] Y. Fujisaki, R. Sakuwa. Estimation of asymptotic stability regions via homogeneous polynomial Lyapunov functions. International Journal of Control, vol. 79, no. 6, pp. 617-623, 2006.
[16] G. Chesi, A. Tesi, A. Vicino, R. Genesio. An LMI approach to constrained optimization with homogeneous forms. Systems & Control Letters, vol. 42, no. 1, pp. 11-19, 2001.
[17] G. Chesi, A. Garulli, A. Tesi, A. Vicino. Homogneous Polynomial Forms for Robustness Analysis of Uncertain Systems, Berlin Germany: Springer-Verlag, pp. 63-97, 2009.
[18] G. Chesi. On the minimum stable commutation time for switching nonlinear systems. IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1284-1289, 2009.
[19] G. Chesi, A. Garulli, A. Tesi, A. Vicino. Homogeneous Lyapunov functions for systems with structured uncertainties. Automatica, vol. 39, no. 6, pp. 1027-1035, 2003.
[20] G. Chesi, Y. S. Hung. Establishing convexity of polynomial Lyapunov functions and their sublevel sets. IEEE Transactions on Automatic Control, vol. 53, no. 10, pp. 2431-2436, 2008.
[21] R. Goebel, A. R. Teel, T. Hu, Z. Lin. Conjugate convex Lyapunov functions for dual linear differential inclusions. IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 661-666, 2006.
[22] L. Xie, S. Shishkin, M. Y. Fu. Piecewise Lyapunov functions for robust stability of linear time-varying systems. Systems & Control Letters, vol. 31, no. 3, pp. 165-171, 1997.
[23] A. L. Zelentsovsky. Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems. IEEE Transactions on Automatic Control, vol. 39, no. 1, pp. 135-138, 1994.
[24] D. Lee, My. Task, Y. Joo. A Lyapunov functional approach to robust stability analysis of continuous-time uncertain linear systems in polytopic domains. International Journal of Control, Automation, and Systems, vol. 11, no. 3, pp. 460-469, 2013.