[1] M. K. Seo, S. Yang, I. J. Kim, S. J. Park. Preparation and electrochemical characteristics of mesoporous carbon spheres for supercapacitors. Materials Research Bulletin, vol. 45, no. 1, pp. 10-14, 2010.
[2] R. Kötz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochimica Acta, vol. 45, no. 15-16, pp. 2483-2498, 2000.
[3] Y. Zhang, H. Feng, X. B. Wu, L. Z. Wang, A. Q. Zhang, T. C. Xia, H. C. Dong, X. F. Li, L. S, Zhang. Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, vol. 34, no. 11, pp. 4889-4899, 2009.
[4] J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, M. Chesneau. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, vol. 101, no. 1, pp. 109-116, 2001.
[5] D. Y. Qu. Studies of the activated carbons used in doublelayer supercapacitors. Journal of Power Sources, vol. 109, no. 2, pp. 403-411, 2002.
[6] H. J. Shen, E. H. Liu, X. X. Xiang, Z. Z. Huang, Y. Y. Tian, Y. H. Wu, Z. L. Wu, H. Xie. A novel activated carbon for supercapacitors. Materials Research Bulletin, vol. 47, no. 3, pp. 662-666, 2012.
[7] L. M. Li, E. H. Liu, J. Li, Y. J. Yang, H. J. Shen, Z. Z. Huang, X. X. Xiang, L. Wen. A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, vol. 195, no. 5, pp. 1516-1521, 2010.
[8] H. Gómez, M. K. Ram, F. Alvi, P. Villalba, E. Stefanakos, A. Kumar. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. Journal of Power Sources, vol. 196, no. 8, pp. 4102-4108, 2011.
[9] V. L . Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, P. M. Ajayan. Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13574-13577, 2007.
[10] J. Bae, M. K. song, Y. J. Park, J. M. Kim, M. Liu, Z. L. Wang. Fiber supercapacitors made of nanowirefiber hybrid structures for wearable/flexible energy storage. Angewandte Chemie International Edition, vol. 50, no. 7, pp. 1683-1687, 2011.
[11] K. Wang, W. J. Zou, B. G. Quan, A. F. Yu, H. P. Wu, P. Jiang, Z. X. Wei. An all-solid-state flexible microsupercapacitor on a chip. Advanced Energy Materials, vol. 1, no. 6, pp. 1068-1072, 2011.
[12] G. Milczarek, A. Ciszewski, I. Stepniak. Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. Journal of Power Sources, vol. 196, no. 18, pp. 7882-7885, 2011.
[13] X. Y. Zhang, X. Y. Wang, L. L. Jiang, H. Wu, C. Wu, J. C. Su. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically. Journal of Power Sources, vol. 216, pp. 290-296, 2012.
[14] Y. P. Fu, X. Cai, H. W. Wu, Z. B. Lv, S. C. Hou, M. Peng, X. Yu, D. C. Zou. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Advanced Materials, vol. 24, no. 42, pp. 5713-5718, 2012.
[15] X. Xiao, X. Peng, H. Y. Jin, T. Q. Li, C. C. Zhang, B. Gao, B. Hu, K. F. Huo, J. Zhou. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Advanced Materials, vol. 25, no. 36, pp. 5091-5097, 2013.
[16] R. R. Zhang, Y. M. Xu, D. Harrison, J. Fyson, F. L. Qiu, D. Southee. A study of flexible supercapacitors for future energy storage. In Proceedings of the 19th International Conference on Automation and Computing: Future Energy and Automation, IEEE, London, UK, pp. 87-90, 2013.
[17] A. Lewandowski, A. Olejniczak, M. Galinski, I. Stepniak. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power Sources, vol. 195, no. 17, pp. 5814-5819, 2010.
[18] B. Yi, X. H. Chen, K. M. Guo, L. S. Xu, C. S. Chen, H. M. Yan, J. H. Chen. High-performance carbon nanotubeimplanted mesoporous carbon spheres for supercapacitors with low series resistance. Materials Research Bulletin, vol. 46, no. 11, pp. 2168-2172, 2011.