[1] I. Podlubny, Fractional Differential Equations,Academie Press, New York, 1999.
[2] R. Hilfer, Application of Fractional Calculus inPhysics, World Science Publishing, Singapore,2000.
[3] Y. Li, H. Sheng, Y. Q. Chen, Analytical impulseresponse of a fractional second order ˉlter and itsimpulse response invariant discretization, SignalProcessing, 91 (2011) 498-507.
[4] J. R. Wang, Y. Zhou, W. Wei, Optimal feed-back control for semilinear fractional evolutionequations in Banach spaces, Systems and Con-trol Letters, 61 (2012) 472-476.
[5] Y. Luo, Y. Q. Chen, H. S. Ahn, Y. G. Pi,Fractional order robust control for cogging effectcompensation in PMSM position servo systems:Stability analysis and experiments, Control En-gineering Practice, 18 (2010) 1022-1036.
[6] H. Fzbay, C. Bonnet, A. R. Fioravanti, PID con-troller design for fractional-order systems withtime delays, Systems and Control Letters, 61(2012) 18-23.
[7] X. J. Wen, Z. M. Wu and J. G. Lu, Stabilityanalysis of a class of nonlinear fractional-ordersystems, IEEE Trans. Circ. and Syst. II: Expressand Briefs, 55 (2008) 1178-1183.
[8] M. P. Lazarevific, A. M. Spasific, Finite-time sta-bility analysis of fractional order time-delay sys-tems: Gronwall's approach, Mathematical andComputer Modelling, 49 (2009) 475-481.
[9] M. P. Aghababa, Robust stabilization and syn-chronization of a class of fractional-order chaoticsystems via a novel fractional sliding mode con-troller, Communications in Nonlinear Scienceand Numerical Simulation, 17 (2012) 2670-2681.
[10] B. T. Krishna, Studies on fractional order difier-entiators and integrators: A survey, Signal Pro-cessing, 91 (2011) 386-426.
[11] J. G. Lu and Y. Q. Chen, Robust stability andstabilization of fractional-order interval systemswith the fractional order: the case 0 <α< 1,IEEE Trans. Auto. Contr., 55 (2010) 152-159.
[12] Y. H. Lan, H. X. Huang, Y. Zhou, Observer-based robust control ofα(1≤ α< 2) fractional-order uncertain systems: a linear matrix inequal-ity approach, IET Control Theory and Applica-tions, 6 (2012) 229-234.
[13] S. Arunsa, V. Q. Nguyen, Design of retardedfractional delay differential systems using themethod of inequalities, International Journal ofAutomation and Computing, 1 (2009) 19-25.
[14] H. S. Ahn, Y. Q. Chen, I. Podlubny, Robuststability test of a class of linear time-invariantinterval fractional-order system using Lyapunovinequality, Applied Mathematics and Computa-tion, 187 (2007) 27-34.
[15] Y. Li, Y. Q. Chen, I. Podlubny, Mitta-Le2er sta-bility of fractional-order nonlinear dynamic sys-tems, Automatica, 45 (2009) 1965-1969.
[16] J. C. Trigeassou, N. Maamri, J. Sabatier, A.Oustaloup, A Lyapunov approach to the sta-bility of fractional differential equations, SignalProcessing, 91 (2011) 437-445.
[17] H. Beikzadeh, H. D. Taghirad, Exponential Non-linear Observer Based on the Differential State-dependent Riccati Equation, International Jour-nal of Automation and Computing, 9 (2012) 358-368.
[18] K. Mohamed, M. Chadli, M. Chaabane, Un-known inputs observer for a class of nonlinearuncertain systems: an LMI approach, Interna-tional Journal of Automation and Computing, 9(2012) 331-336.
[19] E. A. Boroujeni, H. R. Momeni, Non-fragile non-linear fractional order observer design for a classof nonlinear fractional order systems, Signal Pro-cessing, 92 (2012) 2365-2370.
[20] A. Zemouche, M. Boutayeb, G. Bara, Observersfor a class of Lipschitz systems with extensionto H1 performance analysis, Systems ControlLett. 57 (2008) 18-27.
[21] G. Hu, Observers for one-sided lipschitz non-linear systems, IMA J Math Control Info, 23(2006) 395-401.
[22] M. Xu, G. Hu, Y. Zhao, Reduced-order observerdesign for one-sided Lipschitz nonlinear systems,IMA J Math Control Info, 26 (2009) 299-317.
[23] M. Abbaszadeh, H. Marquez, Nonlinear observerdesign for one-sided Lipschitz systems, ProcAmerican Control Conf, (2010) 5284-5289.
[24] Y. Zhao, J. Tao, N. Z. Shi, A note on observerdesign for one-sided Lipschitz nonlinear systems,Systems and Control Letters, 59 (2010) 66-71.
[25] W. Zhang, H. Su, H. Wang, Z. Han, Full-orderand reduced-order observers for one-side nonlin-ear systems using Riccati equations, CommunNonlinear Sci Numer Simulat, 17 (2012) 4968-4977.
[26] W. Zhang, H. Su, F. Zhu, et. al, A note onobservers for discrete-time Lipschitz nonlinearsystems, IEEE Trans Cricuits Syst II: ExpressBriefs, 59 (2012) 123-127.
[27] M. Benallouch, M. Boutayeb, M. Zasadzinski,Observer design for one-sided Lipschitz discrete-time systems, Systems and Control Letters, 61(2012) 879-886.
[28] L. Xie, Output feedback H control of systemswith parameter uncertainty, Int. J. Control, 63(1996) 741-750.
[29] S. Boyd, L. Ghaoui, E. Feron, Linear Matrix In-equalities in System and Control Theory, SIAMStudies in Applied Mathematics, Philadelphia:Pennsylvania, 1994.