[1] J.H.Holland.Adaptation in Natural and Artificial Systems,University of Michigan Press,Ann Arbor,MI,1975.
[2] I.Rechenberg.Evolutionstrategie-optimierung Technischer Systeme nach Prinzipien der biologischen Evolution,Formman-Holzboog,Stuttgart,1973.
[3] L.J.Fogel.Autonomous Automata.Industrial Research,vol.4,no.1,pp.14-19,1962.
[4] H.Miihlenbein,G.Paafi.From Recombination of Genes to the Estimation of Distributions:Ⅰ.Binary Parameters.In Proceedings of the 4th International Conference on Parallel Problem Solving from Nature,Berlin,pp.178-187,1996.
[5] P.Larranaga,J.A.Lozano.Estimation of Distribution Algorithms:a New Tool for Evolutionary Computation,Kluwer Academic Publishers,Boston,2002.
[6] M.Pelikan,D.E.Goldberg.Hierarchical BOA Solves Ising Spin Glasses and MAXSAT.In Proceedings of the Genetic and Evolutionary Computation Conference,Springer Verlag,Chicago,IL,pp.1275-1286,2003.
[7] J.A.Lozano,R.Sagarna,P.Larranaga.Solving Job Scheduling with Estimation of Distribution Algorithms.In Estimation of Distribution Algorithms.A New Tool for Evolutionary Computation,P.Larranaga and J.A.Lozano,(eds.),Kluwer Academis Publishers,Norwell,MA,pp.231-242,2001.
[8] Q.Zhang,J.Sun,E.Tsang.An Evolutionary Algorithm with Guided Mutation for the Maximum Clique Problem.IEEE Transactions on Evolutionary Computation,vol.9,no.2,pp.192-200,2005.
[9] S.K.Shakya,J.A.W.McCall,D.F.Brown.Updating the Probability Vector Using MRF Technique for a Uni-variate EDA.In Proceedings of the Second Starting AI Researchers' Symposium,Frontiers in Artificial Intelligence and Applications,IOS press,Valencia,Spain,vol.109,pp.15-25,2004.
[10] R.Santana.Estimation of Distribution Algorithms with Kikuchi Approximation.Evolutonary Computation,vol.13,no.1,pp.67-98,2005.
[11] R.Kikuchi.A Theory of Cooperative Phenomena.Physical Review,vol.81,no.6,pp.988-1003,1951.
[12] P.Larranaga,R.Etxeberria,J.A.Lozano,B.Sierra,I.Inza,J.M.Pefia.A Review of the Cooperation between Evolutionary Computation and Probabilistic Graphical Models.In Proceedings of the Second Symposium on Artificial Intelligence,La Habana,pp.314-324,1999.
[13] M.I.Jordan,editor.Learning in Graphical Models,NATO Science Series.Kluwer Academic Publishers,Dordrecht,1998.
[14] J.Besag.Spatial Interaction and the Statistical Analysis of Lattice Systems.Journal of the Royal Statistical Society,vol.36,no.2,pp.192-236,1974.
[15] S.Z.Li.Markov Random Field Modeling in Computer Vision,Springer-Verlag,London,UK,1995.
[16] K.P.Murphy.Dynamic Bayesian Networks:Representation,Inference and Learning.Ph.D.dissertation,University of California,Berkeley,2002.
[17] J.M.Hammersley,P.Clifford.Markov Fields on Finite Graphs and Lattices,Unpublished Manuscript,1971.
[18] D.F.Brown,A.B.Garmendia-Doval,J.A.W.McCall.Markov Random Field Modelling of Royal Road Genetic Algorithms.Lecture Notes in Computer Science,Springer,January,vol.2310,pp.65-78,2002.
[19] W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery.Numerical Recipes in C:The Art of Scientific Computing,2nd edition,Cambridge University Press,Cambridge,UK,1992.
[20] S.Shakya,J.McCall,D.Brown.Estimating the Distribution in an EDA.In Proceedings of the International Conference on Adaptive and Natural Computing Algorithms,Coimbra,Portugal,pp.202-205,2005.
[21] S.Shakya,J.McCall,Brown D.Using a Markov Network Model in a Univariate EDA:An Emperical Cost-Benefit Analysis.In Proceedings of Genetic and Evolutionary Computation Conference,Washington D.C.,USA,pp.727-734,2005.
[22] S.K.Shakya,J.A.W.McCall,D.F.Brown.Incorporating a Metropolis Method in a Distribution Estimation Using Markov Random Field Algorithm.In Proceedings of IEEE Congress on Evolutionary Computation,Edinburgh,UK,vol.3,pp.2576-2583,2005.
[23] S.K.Shakya,J.A.W.McCall,D.F.Brown.Solving the Ising Spin Glass Problem Using a Bivariate EDA Based on Markov Random Fields.In Proceedings of IEEE Congress on Evolutionary Computation,Vancouver,Canada,pp.908-915,2006.
[24] N.Metropolis,A.W.Rosenbluth,M.N.Rosenbluth,A.H.Teller,E Teller.Equations of State Calculations by Fast Computational Machine.Journal of Chemical Physics,vol.21,no.6,pp.1087-1091,1953.
[25] S.Geman,D.Geman.Stochastic Relaxation,Gibbs Distributions and the Bayesian Restoration of Images.Readings in Computer Vision:Issues,Problems,Principles,and Paradigms,M.A.Fischler,O.Firschein,(eds.),Kaufmann,Los Altos,CA.,pp.564-584,1987.
[26] M.Pelikan.Bayesian Optimization Algorithm:From Single Level to Hierarchy.Ph.D.dissertation,University of Illinois at Urbana-Champaign,Urbana,IL,2002.Also IlliGAL Report No.2002023.
[27] S.Baluja.Population-based Incremental Learning:a Method for Integrating Genetic Search Based Function Optimization and Competitive Learning,Technical Report CMU-CS-94-163,Pittsburgh,PA,1994.
[28] H.H.Hoos,T.Stutzle.Towards a Characterization of the Behaviour of Stochastic Local Search Algorithms for SAT.Artificial Inteiiigence,vol.112,no.1-2,pp.213-232,1999.
[29] R.Santana.Probabilistic Modeling Based on Undirected Graphs in Estimation Distribution Algorithms.Ph.D.dissertation,Institute of Cybernetics,Mathematics and Physics,Havana,Cuba,2003.