A Survey of Recent Results in Quantized and Event-based Nonlinear Control

Zhong-Ping Jiang Teng-Fei Liu

Zhong-Ping Jiang, Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2015, 12(5): 455-466. doi: 10.1007/s11633-015-0906-x
引用本文: Zhong-Ping Jiang, Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2015, 12(5): 455-466. doi: 10.1007/s11633-015-0906-x
Zhong-Ping Jiang and Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control. International Journal of Automation and Computing, vol. 12, no. 5, pp. 455-466, 2015 doi:  10.1007/s11633-015-0906-x
Citation: Zhong-Ping Jiang and Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control. International Journal of Automation and Computing, vol. 12, no. 5, pp. 455-466, 2015 doi:  10.1007/s11633-015-0906-x

A Survey of Recent Results in Quantized and Event-based Nonlinear Control

doi: 10.1007/s11633-015-0906-x
基金项目: 

This work was supported by National Natural Science Foundation of China (No. 61374042), and the Fundamental Research Funds for the Central Universities in China (No. N130108001).

详细信息
    作者简介:

    Teng-Fei Liu received the B. Eng. degree in automation and the M. Eng. degree in control theory and control engineering from South China University of Technology, China in 2005 and 2007, respectively. He received the Ph.D. degree in engineering from the Australian National University, Australia in 2011. From 2011 to 2013, he was a visiting assistant professor at Polytechnic Institute of New York University (now Polytechnic School of Engineering at New York University), USA. Since 2014, he has been a professor with Northeastern University, China. He, Z. Jiang and D. J. Hill, received the "Guan Zhao-Zhi" Best Paper Award at the 2011 Chinese Control Conference. His research interests include stability theory, robust nonlinear control, quantized control, distributed control and their applications in mechanical systems, power systems and transportation systems. E-mail: tfliu@mail.neu.edu.cn

A Survey of Recent Results in Quantized and Event-based Nonlinear Control

Funds: 

This work was supported by National Natural Science Foundation of China (No. 61374042), and the Fundamental Research Funds for the Central Universities in China (No. N130108001).

  • 摘要: Constructive nonlinear control design has undergone rapid and significant progress over the last three decades. In this paper, a review of recent results in this important field is presented with a focus on interdisciplinary topics at the interface of control, computing and communications. In particular, it is shown that the nonlinear small-gain theory provides a unified framework for solving problems of quantized feedback stabilization and event-triggered control for nonlinear systems. Some open questions in quantized and networked nonlinear control systems are discussed.
  • [1] A. H. Levis, S. I. Marcus, W. R. Perkins, P. Kokotovic, M. Athans, R. W. Brockett, A. S. Willsky. Challenges to control:A collective view. IEEE Transactions on Automatic Control, vol.,32, no.,4, pp.,275-285, 1987.
    [2] L. Guo, D. Z. Cheng, D. X. Feng. Introduction to Control Theory, Beijing, China:Science Press, 2005. (in Chinese)
    [3] Y. G. Hong, X. L. Wang, Z. P. Jiang. Distributed output regulation of leader-follower multi-agent systems. International Journal of Robust and Nonlinear Control, vol.,23, no.,1, pp.,48-66, 2013.
    [4] A. Isidori. Nonlinear Control Systems, 3rd ed., London, UK:Springer, 1995.
    [5] A. Isidori. Nonlinear Control Systems, 3rd ed., London, UK:Springer, 1999.
    [6] H. K. Khalil. Nonlinear Systems, 3rd ed., NJ, USA:Prentice-Hall, 2002.
    [7] E. D. Sontag. Input to state stability:Basic concepts and results. Lectures given at the C.I.M.E. Summer School, Nonlinear and Optimal Control Theory, Springer-Verlag, Cetraro, Italy, vol.,1932, pp.,163-220, 2008.
    [8] E. D. Sontag, A. Teel. Changing supply functions in input/state stable systems. IEEE Transactions on Automatic Control, vol.,40, no.,8, pp.,1476-1478, 1995.
    [9] Z. T. Ding. Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, vol.,39, no.,3, pp.,471-479, 2003.
    [10] B. A. Francis, W. M. Wonham. The internal model principle of control theory. Automatica, vol.,12, no.,5, pp.,457-465, 1976.
    [11] J. Huang. Nonlinear Output Regulation:Theory and Applications, Advances in Design and Control, Philadelphia, USA:SIAM, 2004.
    [12] A. Isidori, L. Marconi, A. Serrani. Robust Autonomous Guidance:An Internal Model Approach, Berlin, Germany:Springer, 2003.
    [13] T. J. Tarn, P. Sanposh, D. Z. Cheng, M. J. Zhang. Output regulation for nonlinear systems:Some recent theoretical and experimental results. IEEE Transactions on Control Systems Technology, vol.,13, no.,4, pp.,605-610, 2005.
    [14] X. L. Wang, Y. G. Hong, J. Huang, Z. P. Jiang. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Transactions on Automatic Control, vol.,55, no.,12, pp.,2891-2895, 2010.
    [15] X. D. Ye, J. Huang. Decentralized adaptive output regulation for a class of large-scale nonlinear systems. IEEE Transactions on Automatic Control, vol.,48, no.,2, pp.,276-281, 2003.
    [16] L. Marconi, L. Praly, A. Isidori. Output stabilization via nonlinear Luenberger observers. SIAM Journal on Control and Optimization, vol.,45, no.,6, pp.,2277-2298, 2007.
    [17] L. Praly, Z. P. Jiang. Stabilization by output feedback for systems with ISS inverse dynamics. Systems and Control Letters, vol.,21, no.,1, pp.,19-33, 1993.
    [18] A. Pavlov, N. van de Wouw, H. Nijmeijer. Uniform Output Regulation of Nonlinear Systems:A Convergent Dynamics Approach, Boston, USA:Birkhauser, 2005.
    [19] E. D. Sontag. Mathematical Control Theory:Deterministic Finite Dimensional Systems, 2nd ed., New York, USA:Springer-Verlag, 1998.
    [20] Z. Artstein. Stabilization with relaxed controls. Nonlinear Analysis:Theory, Methods & Applications, vol.,7, no.,11, pp.,1163-1173, 1983.
    [21] M. Krstić, I. Kanellakopoulos, P. V. Kokotović. Nonlinear and Adaptive Control Design, New York, USA:Wiley, 1995.
    [22] L. Praly, G. Bastin, J. B. Pomet, Z. P. Jiang. Adaptive stabilization of nonlinear systems. Foundations of Adaptive Control, Lecture Notes in Control and Informations Sciences, P. V. Kokotović Ed., Berlin, Germany:Springer-Verlag, pp.,347-434, 1991.
    [23] Z. P. Jiang, L. Praly. Preliminary results about robust lagrange stability in adaptive non-linear regulation. International Journal of Adaptive Control and Signal Processing, vol.,6, no.,4, pp.,285-307, 1992.
    [24] R. Freeman, P. V. Kokotović. Robust Nonlinear Control Design, Boston, USA:Birkhauser, 1996.
    [25] J. A. Primbs, V. Nevistić, J. C. Doyle. Nonlinear optimal control:A control Lyapunov function and receding horizon perspective. Asian Journal of Control, vol.,1, no.,1, pp.,14-24, 1999.
    [26] J. Jankovic. Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Transactions on Automatic Control, vol.,46, no.,7, pp.,1048-1060, 2001.
    [27] I. Karafyllis, Z. P. Jiang. Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM:Control, Optimization and Calculus of Variations, vol.,16, no.,4, pp.,887-928, 2010.
    [28] P. Ögren, M. Egerstedt, X. M. Hu. A control Lyapunov function approach to multiagent coordination. IEEE Transactions on Robotics Automation, vol.,18, no.,5, pp.,847-851, 2002.
    [29] P. V. Kokotović, M. Arcak. Constructive nonlinear control:A historical perspective. Automatica, vol.,37, no.,5, pp.,637-662, 2001.
    [30] J. Tsinias. Sufficient Lyapunov-like conditions for stabilization. Mathematics of Control, Signals and Systems, vol.,2, no.,4, pp.,343-357, 1989.
    [31] P. V. Kokotović. The joy of feedback:Nonlinear and adaptive. IEEE Control Systems, vol.,12, no.,3, pp.,7-17, 1992.
    [32] J. M. Coron, L. Praly. Adding an integrator for the stabilization problem. Systems & Control Letters, vol.,17, no.,2, pp.,89-104, 1991.
    [33] A. Iggidr, G. Sallet. Nonlinear stabilization by adding an integrator. Kybernetika, vol.,30, no.,5, pp.,499-506, 1994.
    [34] R. Outbib, H. Jghima. Comments on the stabilization of nonlinear systems by adding an integrator. IEEE Transactions on Automatic Control, vol.,41, no.,12, pp.,1804-1807, 1996.
    [35] R. Marino, P. Tomei. Nonlinear Control Design:Geometric, Adaptive and Robust, London, UK:Prentice-Hall, 1995.
    [36] Z. P. Jiang, L. Praly. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica, vol.,34, no.,7, pp.,825-840, 1998.
    [37] R. Sepulchre, M. Janković, P. V. Kokotović. Constructive Nonlinear Control, Berlin, Germany:Springer, 1997.
    [38] R. Ortega, A. van der Schaft, F. Castanos, A. Astolfi. Control by interconnection and standard passivity-based control of port-Hamiltonian systems. IEEE Transactions on Automatic Control, vol.,53, no.,11, pp.,2527-2542, 2008.
    [39] R. Ortega, L. P. Borja. New results on control by interconnection and energy-balancing passivity-based control of port-Hamiltonian systems. In Proceedings of the 53rd IEEE Conference on Decision and Control, IEEE, Los Angeles, USA, pp.,2346-2351, 2014.
    [40] H. G. Tanner, K. J. Kyriakopoulos. Backstepping for nonsmooth systems. Automatica, vol.,39, no.,7, pp.,1259-1265, 2003.
    [41] J. Zhou, C. Y. Wen. Adaptive Backstepping Control of Uncertain Systems:Nonsmooth Nonlinearities, Interactions or Time-variations, London, UK:Springer, 2008.
    [42] Y. G. Hong, Z. P. Jiang, G. Feng. Finite-time input-to-state stability and applications to finite-time control design. SIAM Journal on Control and Optimization, vol.,48, no.,7, pp.,4395-4418, 2010.
    [43] Z. P. Jiang, A. R. Teel, L. Praly. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, vol.,7, no.,2, pp.,95-120, 1994.
    [44] Z. P. Jiang, I. Mareels. A small gain control method for nonlinear cascaded systems with dynamic uncertainties. IEEE Transactions on Automatic Control, vol.,42, no.,3, pp.,292-308, 1997.
    [45] E. D. Sontag. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, vol.,34, no.,4, pp.,435-443, 1989.
    [46] I. Karafyllis, Z. P. Jiang. Stability and Stabilization of Nonlinear Systems, London, UK, Springer, 2011.
    [47] Z. P. Jiang, I. Mareels, D. J. Hill, J. Huang. A unifying framework for global regulation via nonlinear output feedback:From ISS to iISS. IEEE Transactions on Automatic Control, vol.,49, no.,4, pp.,549-562, 2004.
    [48] T. F. Liu, Z. P. Jiang, D. J. Hill. A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica, vol.,48, no.,1, pp.,145-152, 2012.
    [49] D. Liberzon. Hybrid feedback stabilization of systems with quantized signals. Automatica, vol.,39, no.,9, pp.,1543-1554, 2003.
    [50] T. Liu, Z. P. Jiang, D. J. Hill. Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Transactions on Automatic Control, vol.,57, no.,5, pp.,1326-1332, 2012.
    [51] T. F. Liu, Z. P. Jiang, D. J. Hill. Quantized stabilization of strict-feedback nonlinear systems based on ISS cyclic-small-gain theorem. Mathematics of Control, Signals, and Systems, vol.,24, no.,1-2, pp.,75-110, 2012.
    [52] T. F. Liu, Z. P. Jiang, D. J. Hill. Nonlinear Control of Dynamic Networks, Boca Raton, FL, USA:CRC Press, 2014.
    [53] R. K. Miller, M. S. Mousa, A. N. Michel. Quantization and overflow effects in digital implementation of linear dynamic controllers. IEEE Transactions on Automatic Control, vol.,33, no.,7, pp.,698-704, 1988.
    [54] D. F. Delchamps. Stabilizing a linear system with quantized state feedback. IEEE Transactions on Automatic Control, vol.,35, no.,8, pp.,916-924, 1990.
    [55] R. W. Brockett, D. Liberzon. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, vol.,45, no.,7, pp.,1279-1289, 2000.
    [56] M. Fu, L. Xie. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control, vol.,50, no.,11, pp.,1698-1711, 2005.
    [57] N. Elia, S. K. Mitter. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, vol.,46, no.,9, pp.,1384-1400, 2001.
    [58] F. Ceragioli, C. De Persis. Discontinuous stabilization of nonlinear systems:Quantized and switching controls. Systems & Control Letters, vol.,56, no.,7-8, pp.,461-473, 2007.
    [59] C. De Persis. Robust stabilization of nonlinear systems by quantized and ternary control. Systems & Control Letters, vol.,58, no.,8, pp.,602-608, 2009.
    [60] D. Liberzon, J. P. Hespanha. Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, vol.,50, no.,6, pp.,910-915, 2005.
    [61] D. Liberzon, D. Nešić. Input-to-state stabilization of linear systems with quantized state measurements. IEEE Transactions on Automatic Control, vol.,52, no.,5, pp.,767-781, 2007.
    [62] D. Liberzon. Observer-based quantized output feedback control of nonlinear systems. In Proceedings of the 17th IFAC World Congress, COEX, South Korea, vol.,17, pp.,8039-8043, 2008.
    [63] T. F. Liu, Z. P. Jiang. Quantized feedback stabilization of nonlinear cascaded systems with dynamic uncertainties. Science China:Information Sciences, to be published.
    [64] K. E. Årzén. A simple event-based PID controller. In Proceedings of the 1999 IFAC World Congress, pp.,423-428, 1999.
    [65] K. J. Åströom, B. M. Bernhardsson. Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In Proceedings of the 41st IEEE Conference on Decision and Control, IEEE, Las Vegas, USA, vol.,2, pp.,2011-2016, 2002.
    [66] J. K. Yook, D. M. Tilbury, N. R. Soparkar. Trading computation for bandwidth:Reducing communication in distributed control systems using state estimators. IEEE Transactions on Control Systems Technology, vol.,10, no.,4, pp.,503-518, 2002.
    [67] P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, vol.,52, no.,9, pp.,1680-1685, 2007.
    [68] W. P. M. H. Heemels, J. H. Sandee, P. P. J. van den Bosch. Analysis of event-driven controllers for linear systems. International Journal of Control, vol.,81, no.,4, pp.,571-590, 2008.
    [69] T. Henningsson, E. Johannesson, A. Cervin. Sporadic event-based control of first-order linear stochastic systems. Automatica, vol.,44, no.,11, pp.,2890-2895, 2008.
    [70] W. P. M. H. Heemels, M. C. F. Donkers, A. R. Teel. Periodic event-triggered control for linear systems. IEEE Transactions on Automatic Control, vol.,58, no.,4, pp.,847-861, 2013.
    [71] T. Donkers, M. Heemels. Output-based event-triggered control with guaranteed L-gain and improved and decentralized event-triggering. IEEE Transactions on Automatic Control, vol.,57, no.,6, pp.,1362-1376, 2012.
    [72] P. J. Gawthrop, L. P. Wang. Event-driven intermittent control. International Journal of Control, vol.,82, no.,12, pp.,2235-2248, 2009.
    [73] J. Lunze, D. Lehmann. A state-feedback approach to event-based control. Automatica, vol.,46, no.,1, pp.,211-215, 2010.
    [74] N. Marchand, S. Durand, J. F. G. Castellanos. A general formula for event-based stabilization of nonlinear systems. IEEE Transactions on Automatic Control, vol.,58, no.,5, pp.,1332-1337, 2013.
    [75] P. Tallapragada, N. Chopra. On event triggered tracking for nonlinear systems. IEEE Transactions on Automatic Control, vol.,58, no.,9, pp.,2343-2348, 2013.
    [76] X. F. Wang, M. D. Lemmon. Event-triggering in distributed networked control systems. IEEE Transactions on Automatic Control, vol.,56, no.,3, pp.,586-601, 2011.
    [77] C. De Persis, R. Saile, F. Wirth. Parsimonious event-triggered distributed control:A Zeno free approach. Automatica, vol.,49, no.,7, pp.,2116-2124, 2013.
    [78] E. Garcia, P. J. Antsaklis. Model-based event-triggered control for systems with quantization and time-varying network delays. IEEE Transactions on Automatic Control, vol.,58, no.,2, pp.,422-434, 2013.
    [79] W. P. M. H. Heemels, K. H. Johansson, P. Tabuada. An introduction to event-triggered and self-triggered control. In Proceedings of the 51st Annual IEEE Conference on Decision and Control, IEEE, Maui, USA, pp.,3270-3285, 2012.
    [80] M. D. Lemmon. Event-triggered feedback in control, estimation, and optimization. Networked Control Systems, A. Bemporad, M. Heemels, M. Johansson Eds., Berlin, Germany:Springer-Verlag, vol.,406, pp.,293-358, 2010.
    [81] R. Goebel, R. G. Sanfelice, A. R. Teel. Hybrid dynamical systems. IEEE Control Systems, vol.,29, no.,2, pp.,28-93, 2009.
    [82] T. F. Liu, Z. P. Jiang. A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Transactions on Automatic Control, to be published.
    [83] T. F. Liu, Z. P. Jiang. Event-based nonlinear control:From centralized to decentralized systems. In Proceedings of 2015 IEEE International Conference on Information and Automation, Lijiang, China, pp.,690-695, 2015.
    [84] W. Zhu, Z. P. Jiang, G. Feng. Event-based consensus of multi-agent systems with general linear models. Automatica, vol.,50, no.,2, pp.,552-558, 2014.
    [85] W. Zhu, Z. P. Jiang. Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Transactions on Automatic Control, vol.,60, no.,5, pp.,1362-1367, 2015.
    [86] I. Karafyllis, Z. P. Jiang. Stability and Stabilization of Nonlinear Systems, London, UK:Springer, 2011.
    [87] T. F. Liu, Z. P. Jiang. Distributed formation control of nonholonomic mobile robots without global position measurements. Automatica, vol.,49, no.,2, pp.,592-600, 2013.
    [88] Y. Fan, G. Feng, Y. Wang, C. Song. Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica, vol.,49, no.,2, pp.,671-675, 2013.
    [89] G. S. Seyboth, D. V. Dimarogonas, K. H. Johansson. Event-based broadcasting for multi-agent average consensus. Automatica, vol.,49, no.,1, pp.,245-252, 2013.
    [90] M. Guinaldo, D. V. Dimarogonas, K. H. Johansson, J. Sánchez, S. Dormido. Distributed event-based control strategies for interconnected linear systems. IET Control Theory and Applications, vol.,7, no.,6, pp.,877-886, 2013.
    [91] F. L. Lewis, D. Vrabie, K. G. Vamvoudakis. Reinforcement learning and feedback control:Using natural decision methods to design optimal adaptive controllers. IEEE Control Systems, vol.,32, no.,6, pp.,76-105, 2012.
    [92] Z. P. Jiang, Y. Jiang. Robust adaptive dynamic programming for linear and nonlinear systems:An overview. European Journal of Control, vol.,19, no.,5, pp.,417-425, 2013.
    [93] Y. Jiang, Z. P. Jiang. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, vol.,25, no.,5, pp.,882-893, 2014.
    [94] T. Bian, Y. Jiang, Z. P. Jiang. Decentralized adaptive optimal control of large-scale systems with application to power systems. IEEE Transactions on Industrial Electronics, vol.,62, no.,4, pp.,2439-2447, 2015.
  • [1] Hiroki Matsumori, Ming-Cong Deng, Yuichi Noge.  An Operator-based Nonlinear Vibration Control System Using a Flexible Arm with Shape Memory Alloy . International Journal of Automation and Computing, 2020, 17(1): 139-150. doi: 10.1007/s11633-018-1149-4
    [2] Amir Hossein Davaie Markazi, Mohammad Maadani, Seyed Hassan Zabihifar, Nafiseh Doost-Mohammadi.  Adaptive Fuzzy Sliding Mode Control of Under-actuated Nonlinear Systems . International Journal of Automation and Computing, 2018, 15(3): 364-376. doi: 10.1007/s11633-017-1108-5
    [3] Lei Zou, Zi-Dong Wang, Dong-Hua Zhou.  Event-based Control and Filtering of Networked Systems: A Survey . International Journal of Automation and Computing, 2017, 14(3): 239-253. doi: 10.1007/s11633-017-1077-8
    [4] Shotaro Kawahata, Ming-Cong Deng.  Operator-based Nonlinear Temperature Control Experiment for Microreactor Group Actuated by Peltier Devices . International Journal of Automation and Computing, 2016, 13(4): 401-408. doi: 10.1007/s11633-016-0994-2
    [5] Bai-Shun Liu, Xiang-Qian Luo, Jian-Hui Li.  General Convex Integral Control . International Journal of Automation and Computing, 2014, 11(5): 565-570. doi: 10.1007/s11633-014-0813-6
    [6] Alessandro di Gaeta, Umberto Montanaro.  Application of a Robust Model Reference Adaptive Control Algorithm to a Nonlinear Automotive Actuator . International Journal of Automation and Computing, 2014, 11(4): 377-391. doi: 10.1007/s11633-014-0803-8
    [7] Hassan A. Yousef, Mohamed Hamdy.  Observer-based Adaptive Fuzzy Control for a Class of Nonlinear Time-delay Systems . International Journal of Automation and Computing, 2013, 10(4): 275-280. doi: 10.1007/s11633-013-0721-1
    [8] Ryan Montague, Chris Bingham.  Nonlinear Control of Magnetically-geared Drive-trains . International Journal of Automation and Computing, 2013, 10(4): 319-326. doi: 10.1007/s11633-013-0727-8
    [9] Paramita Guha,  Mashuq Un Nabi.  Model Reduction and Controller Design for a Nonlinear Heat Conduction Problem Using Finite Element Method . International Journal of Automation and Computing, 2012, 9(5): 474-479. doi: 10.1007/s11633-012-0669-6
    [10] Lei-Po Liu,  Zhu-Mu Fu,  Xiao-Na Song.  Sliding Mode Control with Disturbance Observer for Class of Nonlinear Systems . International Journal of Automation and Computing, 2012, 9(5): 487-491. doi: 10.1007/s11633-012-0671-z
    [11] Fusaomi Nagata, Keigo Watanabe.  Adaptive Learning with Large Variability of Teaching Signals for Neural Networks and Its Application to Motion Control of an Industrial Robot . International Journal of Automation and Computing, 2011, 8(1): 54-61. doi: 10.1007/s11633-010-0554-0
    [12] Chang-Liang Liu, Shao-Cheng Tong, Yong-Ming Li, Yuan-Qing Xia.  Adaptive Fuzzy Backstepping Output Feedback Control of Nonlinear Time-delay Systems with Unknown High-frequency Gain Sign . International Journal of Automation and Computing, 2011, 8(1): 14-22. doi: 10.1007/s11633-010-0549-x
    [13] Anna Witkowska,  Roman Smierzchalski.  Nonlinear Backstepping Ship Course Controller . International Journal of Automation and Computing, 2009, 6(3): 277-284. doi: 10.1007/s11633-009-0277-2
    [14] Shao-Cheng Tong,  Yong-Ming Li.  Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks . International Journal of Automation and Computing, 2009, 6(2): 145-153. doi: 10.1007/s11633-009-0145-0
    [15] Ming-Zhe Hou, Ai-Guo Wu, Guang-Ren Dua.  Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics . International Journal of Automation and Computing, 2008, 5(3): 307-312. doi: 10.1007/s11633-008-0307-5
    [16] Ling-Lai Li,  Dong-Hua Zhou,  Ling Wang.  Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm . International Journal of Automation and Computing, 2007, 4(2): 183-188. doi: 10.1007/s11633-007-0183-4
    [17] Sing Kiong Nguang, Ping Zhang, Steven X. Ding.  Parity Relation Based Fault Estimation for Nonlinear Systems: An LMI Approach . International Journal of Automation and Computing, 2007, 4(2): 164-168. doi: 10.1007/s11633-007-0164-7
    [18] David H. Owens, Maria Tomas-Rodriguez, Jari J. Hatönen.  Limiting Behaviour in Parameter Optimal Iterative Learning Control . International Journal of Automation and Computing, 2006, 3(3): 222-228. doi: 10.1007/s11633-006-0222-6
    [19] Akira Inoue,  Ming-Cong Deng.  Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System . International Journal of Automation and Computing, 2006, 3(3): 229-234. doi: 10.1007/s11633-006-0229-z
    [20] Yun Li, Hiroshi Kashiwagi.  High-Order Volterra Model Predictive Control and Its Application to a Nonlinear Polymerisation Process . International Journal of Automation and Computing, 2005, 2(2): 208-214. doi: 10.1007/s11633-005-0208-9
  • 加载中
计量
  • 文章访问数:  5320
  • HTML全文浏览量:  45
  • PDF下载量:  2077
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-06-16

A Survey of Recent Results in Quantized and Event-based Nonlinear Control

doi: 10.1007/s11633-015-0906-x
    基金项目:

    This work was supported by National Natural Science Foundation of China (No. 61374042), and the Fundamental Research Funds for the Central Universities in China (No. N130108001).

    作者简介:

    Teng-Fei Liu received the B. Eng. degree in automation and the M. Eng. degree in control theory and control engineering from South China University of Technology, China in 2005 and 2007, respectively. He received the Ph.D. degree in engineering from the Australian National University, Australia in 2011. From 2011 to 2013, he was a visiting assistant professor at Polytechnic Institute of New York University (now Polytechnic School of Engineering at New York University), USA. Since 2014, he has been a professor with Northeastern University, China. He, Z. Jiang and D. J. Hill, received the "Guan Zhao-Zhi" Best Paper Award at the 2011 Chinese Control Conference. His research interests include stability theory, robust nonlinear control, quantized control, distributed control and their applications in mechanical systems, power systems and transportation systems. E-mail: tfliu@mail.neu.edu.cn

摘要: Constructive nonlinear control design has undergone rapid and significant progress over the last three decades. In this paper, a review of recent results in this important field is presented with a focus on interdisciplinary topics at the interface of control, computing and communications. In particular, it is shown that the nonlinear small-gain theory provides a unified framework for solving problems of quantized feedback stabilization and event-triggered control for nonlinear systems. Some open questions in quantized and networked nonlinear control systems are discussed.

English Abstract

Zhong-Ping Jiang, Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2015, 12(5): 455-466. doi: 10.1007/s11633-015-0906-x
引用本文: Zhong-Ping Jiang, Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2015, 12(5): 455-466. doi: 10.1007/s11633-015-0906-x
Zhong-Ping Jiang and Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control. International Journal of Automation and Computing, vol. 12, no. 5, pp. 455-466, 2015 doi:  10.1007/s11633-015-0906-x
Citation: Zhong-Ping Jiang and Teng-Fei Liu. A Survey of Recent Results in Quantized and Event-based Nonlinear Control. International Journal of Automation and Computing, vol. 12, no. 5, pp. 455-466, 2015 doi:  10.1007/s11633-015-0906-x
参考文献 (94)

目录

    /

    返回文章
    返回