Introducing a New Tool for Studying Unstable Systems

František Gazdoš

František Gazdoš. Introducing a New Tool for Studying Unstable Systems[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 580-587. doi: 10.1007/s11633-014-0844-z
引用本文: František Gazdoš. Introducing a New Tool for Studying Unstable Systems[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 580-587. doi: 10.1007/s11633-014-0844-z
František GazdošIntroducing a New Tool for Studying Unstable Systems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 580-587, 2014. doi: 10.1007/s11633-014-0844-z
Citation: František GazdošIntroducing a New Tool for Studying Unstable Systems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 580-587, 2014. doi: 10.1007/s11633-014-0844-z

Introducing a New Tool for Studying Unstable Systems

doi: 10.1007/s11633-014-0844-z
详细信息
    作者简介:

    František Gazdoš graduated from the Brno University of Technology, Czech Republic in 1999 with the M. Sc. degree in automation. He then followed studies of technical cybernetics at Tomas Bata University in Zlín, Czech Republic, obtaining his Ph.D. degree in 2004. He became an associate professor in machine and process control in 2012 and now works at the Department of Process Control, Faculty of Applied Informatics, Tomas Bata University in Zlín, Czech Republic. He is an author or a coauthor of more than 70 journal contributions and conference papers giving lectures at foreign universities, such as Politecnico di Milano, University of Strathclyde Glasgow, and Universidade Técnica de Lisboa, among others. His research interests include modelling, simulation, and control of technological processes. E-mail: gazdos@fai.utb.cz

Introducing a New Tool for Studying Unstable Systems

  • 摘要: This paper presents the starting project of a web site focussed on unstable systems. It is a web-based database in a bilingual version (English/Czech), which can be used as an information database for models of unstable processes. The web site contains the mathematical models of such systems, including their simulation files together with basic information about the stability of dynamic systems. The paper outlines the motivation for the development of this database, presents its basic structure, and discusses several models from the site. The areas of prospective usage are also suggested together with the possible directions of further development of this project. The contribution ends with a case study using the database for control system analysis and design of the Amira inverted pendulum. The systematic polynomial approach is fruitfully utilised for the task together with some useful tools from the robust control theory.
  • [1] M. Chidambaram. Control of unstable systems: A review. Journal of Energy, Heat and Mass Transfer, vol. 19, pp. 49-57, 1997.
    [2] R. Padma Sree, M. Chidambaram. Control of Unstable Systems, Oxford: Alpha Science Int. Ltd., 2006.
    [3] G. Stein. Respect the unstable. IEEE Control System Magazine, vol. 23, no. 4, pp. 12-25, 2003.
    [4] R. H. Middleton. Trade-offs in linear control system design. Automatica, vol. 27, no. 2, pp. 281-292, 1991.
    [5] S. Skogestad, K. Havre, T. Larsson. Control limitations for unstable plants. In Proceedings of the 15th Triennial World Congress, IFAC, Barcelona, Spain, pp. 328, 2002.
    [6] J. L. Willems. Stability Theory of Dynamical Systems, New York: Wiley, 1970.
    [7] S. Skogestad, I. Postlethwaite. Multivariable Feedback Control: Analysis and Design, Chichester: Wiley, 2005.
    [8] P. C. Parks. A. M. Lyapunov's stability theory-100 years on. IMA Journal of Mathematical Control and Information, vol. 9, no. 4, pp. 275-303, 1992.
    [9] K. J. Åström, R. M. Murray. Feedback Systems: An Introduction for Scientist and Engineers, Princeton: Princeton University Press, 2008.
    [10] J. C. Doyle, B. A. Francis, A. R. Tannenbaum. Feedback Control Theory, Mineola, New York: Dover Publications, 2009.
    [11] J. H. Park, S. W. Sung, I. B. Lee. An enhanced PID control strategy for unstable processes. Automatica, vol. 34, no. 6, pp. 751-756, 1998.
    [12] G. Marchetti, C. Scali, D. R. Lewin. Identification and control of open-loop unstable processes by relay methods. Automatica, vol. 37, no. 12, pp. 2049-2055, 2001.
    [13] R. Lozano, P. Castillo, P. Garcia, A. Dzul. Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, vol. 40, no. 4, pp. 603-612, 2004.
    [14] P. García, P. Albertos, T. Hägglund. Control of unstable non-minimum-phase delayed systems. Journal of Process Control, vol. 16, no. 10, pp. 1099-1111, 2006.
    [15] P. Dostál, F. Gazdoš, V. Bobál. Design of controllers for time delay systems, Part II: Integrating and unstable systems. Journal of Electrical Engineering, vol. 59, no. 1, pp. 3-8, 2008.
    [16] X. K. Zhang, X. L. Jia. Solving robust controller of unstable process using mirror-injection method. Systems Engineering and Electronics, vol. 22, no. 4, pp. 10-12, 2000.
    [17] B. R. Barmish. New Tools for Robustness of Linear Systems, New York: Macmillan, 1994.
    [18] S. P. Bhattacharyya, H. Chapellat, L. H. Keel. Robust Control: The Parametric Approach, New Jersey: Prentice-Hall, 1995.
    [19] C. T. Liou, Y. S. Chien. The effect of nonideal mixing on input multiplicity in a CSTR. Chemical Engineering Science, vol. 46, no. 8, pp. 2113-2116, 1991.
    [20] J. H. Blakelock. Automatic Control of Aircraft and Missiles, New York: John Wiley, 1991.
    [21] W. L. Rogers, D. J. Collins. X-29 H controller synthesis. Journal of Guidance, Control, and Dynamics, vol. 15, no. 4, pp. 962-967, 1992.
    [22] R. Clarke, J. J. Burken, J. T. Bosworth, J. E. Bauer. X-29 flight control system: Lessons learned. International Journal of Control, vol. 59, no. 1, pp. 199-219, 1994.
    [23] AMIRA. PS600 Laboratory Experiment Inverted Pendulum, Amira GmbH, Duisburg, Germany, 2000.
    [24] P. Chalupa, V. Bobál. Modelling and predictive control of inverted pendulum. In Proceedings of the 22nd European Conference on Modelling and Simulation, EDMS, Nicosia, Cyprus, pp. 531-537, 2008.
    [25] J. Marholt, F. Gazdoš, P. Dostál. Control of the unstable system of the inverted pendulum using the polynomial approach. Cybernetic Letters, 2011.
    [26] J. Kolařík. Web-based Database of Unstable Systems, Bachelor Dissertation, Faculty of Applied Informatics, Tomas Bata University in Zlín, Czech Republic, 2012. (in Czech)
    [27] J. Marriott, E. Waring. The Official Joomla! Book, 2nd ed., Boston: Addison-Wesley Professional, 2013.
    [28] V. Kučera. Diophantine equations in control-a survey. Automatica, vol. 29, no. 6, pp. 1361-1375, 1993.
    [29] K. J. Hunt. Polynomial Methods in Optimal Control and Filtering, London: Peter Peregrinus Ltd., 1993.
    [30] B. D. O. Anderson. From Youla-Kucera to identification, adaptive and nonlinear control. Automatica, vol. 34, no. 12, pp. 1485-1506, 1998.
    [31] M. J. Grimble. Robust Industrial Control: Optimal Design Approach for Polynomial Systems, London: Prentice Hall, 1994.
    [32] F. Gazdoš, J. Marholt, J. Kolařík. Unstable systems database: A new tool for students, teachers and scientists. In Proceedings of Nostradamus 2013: Prediction, Modeling & Analysis of Complex Systems, Springer, Ostrava, Czech Republic, pp. 275-284, 2013.
  • [1] Kayode Owa, Sanjay Sharma, Robert Sutton.  A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable Coupled Tank System . International Journal of Automation and Computing, 2015, 12(2): 156-170. doi: 10.1007/s11633-014-0825-2
    [2] Chang-Jin Xu, Yu-Sen Wu.  Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback . International Journal of Automation and Computing, 2015, 12(2): 182-191. doi: 10.1007/s11633-014-0852-z
    [3] Mohamadreza Homayounzade, Mehdi Keshmiri, Mostafa Ghobadi.  A Robust Tracking Controller for Electrically Driven Robot Manipulators: Stability Analysis and Experiment . International Journal of Automation and Computing, 2015, 12(1): 83-92. doi: 10.1007/s11633-014-0850-1
    [4] Wen-Lei Li, Ming-Ming Li.  Nonlinear Adaptive Robust Control Design for Static Synchronous Compensator Based on Improved Dynamic Surface Method . International Journal of Automation and Computing, 2014, 11(3): 334-339. doi: 10.1007/s11633-014-0797-2
    [5] Zhong-Qiang Wu, Chun-Hua Xu, Yang Yang.  Robust Iterative Learning Control of Single-phase Grid-connected Inverter . International Journal of Automation and Computing, 2014, 11(4): 404-411. doi: 10.1007/s11633-014-0806-5
    [6] Chang-Jin Xu, Yu-Sen Wu.  Chaos Control of a Chemical Chaotic System via Time-delayed Feedback Control Method . International Journal of Automation and Computing, 2014, 11(4): 392-398. doi: 10.1007/s11633-014-0804-7
    [7] Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev, Renat V. Yuldashev.  Simulation of Analog Costas Loop Circuits . International Journal of Automation and Computing, 2014, 11(6): 571-579. doi: 10.1007/s11633-014-0846-x
    [8] Rihem Farkh, Kaouther Laabidi, Mekki Ksouri.  Stabilizing Sets of PI/PID Controllers for Unstable Second Order Delay System . International Journal of Automation and Computing, 2014, 11(2): 210-222. doi: 10.1007/s11633-014-0783-8
    [9] Jiri Vojtesek, Petr Dostal.  Optimal Choice of Weighting Factors in Adaptive Linear Quadratic Control . International Journal of Automation and Computing, 2014, 11(3): 241-248. doi: 10.1007/s11633-014-0786-5
    [10] A Stability Criterion for Singular Systems with Two Additive Time-varying Delay Components . International Journal of Automation and Computing, 2013, 10(1): 39-45 . doi: 10.1007/s11633-013-0694-0
    [11] Hassan A. Yousef, Mohamed Hamdy.  Observer-based Adaptive Fuzzy Control for a Class of Nonlinear Time-delay Systems . International Journal of Automation and Computing, 2013, 10(4): 275-280. doi: 10.1007/s11633-013-0721-1
    [12] Arthur Anyakwo,  Crinela Pislaru,  Andrew Ball.  A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact . International Journal of Automation and Computing, 2012, 9(3): 237-247. doi: 10.1007/s11633-012-0640-6
    [13] Chang-Liang Liu, Shao-Cheng Tong, Yong-Ming Li, Yuan-Qing Xia.  Adaptive Fuzzy Backstepping Output Feedback Control of Nonlinear Time-delay Systems with Unknown High-frequency Gain Sign . International Journal of Automation and Computing, 2011, 8(1): 14-22. doi: 10.1007/s11633-010-0549-x
    [14] Qing-Zheng Gao,  Xue-Jun Xie.  Robustness Analysis of Discrete-time Indirect Model Reference Adaptive Control with Normalized Adaptive Laws . International Journal of Automation and Computing, 2010, 7(3): 381-388. doi: 10.1007/s11633-010-0518-4
    [15] Li He, Zheng-Hao Wang, Ke-Long Zhang.  Production Management Modelling Based on MAS . International Journal of Automation and Computing, 2010, 7(3): 336-341. doi: 10.1007/s11633-010-0512-x
    [16] Yang Liu,  Mohammad Shahidul Hasan,  Hong-Nian Yu.  Modelling and Remote Control of an Excavator . International Journal of Automation and Computing, 2010, 7(3): 349-358. doi: 10.1007/s11633-010-0514-8
    [17] Xiao-Fen Wang, Ying-Rui Liu, Wen-Sheng Zhang.  Research on Modelling Digital Paper-cut Preservation . International Journal of Automation and Computing, 2009, 6(4): 356-363. doi: 10.1007/s11633-009-0356-4
    [18] Qi-Wen Deng, Qing Wei, Ze-Xiang Li.  Analysis of Absolute Stability for Time-delay Teleoperation Systems . International Journal of Automation and Computing, 2007, 4(2): 203-207. doi: 10.1007/s11633-007-0203-4
    [19] Min-Ze Chen,  Qi Zhao,  Dong-Hua Zhou.  A Robust Fault Detection Approach for Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(1): 23-28. doi: 10.1007/s11633-006-0023-y
    [20] Yun Li, Kiam Heong Ang, Gregory C.Y. Chong, Wenyuan Feng, Kay Chen Tan, Hiroshi Kashiwagi.  CAutoCSD-Evolutionary Search and Optimisation Enabled Computer Automated Control System Design . International Journal of Automation and Computing, 2004, 1(1): 76-88. doi: 10.1007/s11633-004-0076-8
  • 加载中
计量
  • 文章访问数:  4886
  • HTML全文浏览量:  30
  • PDF下载量:  1844
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-05
  • 修回日期:  2013-10-11

Introducing a New Tool for Studying Unstable Systems

doi: 10.1007/s11633-014-0844-z
    作者简介:

    František Gazdoš graduated from the Brno University of Technology, Czech Republic in 1999 with the M. Sc. degree in automation. He then followed studies of technical cybernetics at Tomas Bata University in Zlín, Czech Republic, obtaining his Ph.D. degree in 2004. He became an associate professor in machine and process control in 2012 and now works at the Department of Process Control, Faculty of Applied Informatics, Tomas Bata University in Zlín, Czech Republic. He is an author or a coauthor of more than 70 journal contributions and conference papers giving lectures at foreign universities, such as Politecnico di Milano, University of Strathclyde Glasgow, and Universidade Técnica de Lisboa, among others. His research interests include modelling, simulation, and control of technological processes. E-mail: gazdos@fai.utb.cz

摘要: This paper presents the starting project of a web site focussed on unstable systems. It is a web-based database in a bilingual version (English/Czech), which can be used as an information database for models of unstable processes. The web site contains the mathematical models of such systems, including their simulation files together with basic information about the stability of dynamic systems. The paper outlines the motivation for the development of this database, presents its basic structure, and discusses several models from the site. The areas of prospective usage are also suggested together with the possible directions of further development of this project. The contribution ends with a case study using the database for control system analysis and design of the Amira inverted pendulum. The systematic polynomial approach is fruitfully utilised for the task together with some useful tools from the robust control theory.

English Abstract

František Gazdoš. Introducing a New Tool for Studying Unstable Systems[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 580-587. doi: 10.1007/s11633-014-0844-z
引用本文: František Gazdoš. Introducing a New Tool for Studying Unstable Systems[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(6): 580-587. doi: 10.1007/s11633-014-0844-z
František GazdošIntroducing a New Tool for Studying Unstable Systems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 580-587, 2014. doi: 10.1007/s11633-014-0844-z
Citation: František GazdošIntroducing a New Tool for Studying Unstable Systems. International Journal of Automation and Computing, vol. 11, no. 6, pp. 580-587, 2014. doi: 10.1007/s11633-014-0844-z
参考文献 (32)

目录

    /

    返回文章
    返回