[1]
|
Y. Y. Qu, W. M. Liao, S. Lu, S. J. Wu. Hierarchical textdetection: From word level to character level. In Proceedingsof the 19th International Conference on Advances inMultimedia Modeling, Lecture Notes in Computer Science,Springer, Huangshan, China, vol. 7733 pp. 24-35, 2013. |
[2]
|
V. N. M. Aradhya, M. S. Pavithra. An application of Kmeansclustering for improving video text detection. InProceedings of International Symposium on Intelligent Informatics,Advances in Intelligent Systems and Computer,Springer, Channai, India, vol. 182, pp. 41-47, 2013. |
[3]
|
C. Z. Shi, C. H. Wang, B. H. Xiao, Y. Zhang, S. Gao. Scenetext detection using graph model built upon maximally stableextremal regions. Pattern Recognition Letters, vol. 34,no. 2, pp. 107-116, 2013. |
[4]
|
S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong,R. Young. ICDAR 2003 robust reading competitions. InProceedings of the 7th International Conference on DocumentAnalysis and Recognition, IEEE, Edinburgh, Scotland,pp. 682-687, 2003. |
[5]
|
J. Liang, D. Doermann, H. P. Li. Camera-based analysisof text and documents: A survey. International Journal ofDocument Analysis and Recognition, vol. 7, no. 2-3, pp. 83-104, 2005. |
[6]
|
H. G. Zhang, K. Zhao, Y. Z. Song, J. Guo. Text extractionfrom natural scene image: A survey. Neurocomputing,vol. 122, pp. 310-323, 2013. |
[7]
|
A. K. Jain, B. Yu. Automatic text location in images andvideo frames. Pattern Recognition, vol. 31, no. 12, pp. 2055-2076, 1998. |
[8]
|
X. R. Chen, A. L. Yuille. Detecting and reading text innatural scenes. In Proceedings of IEEE Computer SocietyConference on Computer Vision and Pattern Recognition,IEEE, Washington DC, USA, pp. 366-373, 2004. |
[9]
|
L. Neumann, R. Ewerth, B. Freisleben. Text detection inimages based on unsupervised classification of high frequencywavelet coefficients. In Proceedings of InternationalConference on Pattern Recognition, IEEE, Cambridge,England, pp. 425-428, 2004. |
[10]
|
L. Neumann, J. Matas. Real-time scene text localizationand recognition. In Proceedings of IEEE Computer SocietyConference on Computer Vision and Pattern Recognition,IEEE, Providence, USA, pp. 3538-3545, 2012. |
[11]
|
G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. ElGhaoui, M. I. Jordan. Learning the kernel matrix withsemidefinite programming. Journal of Machine LearningResearch, vol. 5, pp. 27-72, 2004. |
[12]
|
F. R. Bach, G. R. G. Lanckriet, M. I. Jordan. Multiple kernellearning, conic duality, and the SMO algorithm. In Proceedingsof the 21st International Conference on MachineLearning, ACM, Banff, Alberta, Canada, 2004. |
[13]
|
S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf. Largescale multiple kernel learning. Journal of Machine LearningResearch, vol. 7, pp. 1531-1565, 2006. |
[14]
|
A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet. SimpleMKL.Journal of Machine Learning Research, vol.9,pp. 2491-2521, 2008. |
[15]
|
C. Cortes, M. Mohri, A. Rostamizadeh. L2 regularizationfor learning kernels. In Proceedings of the 25th Conferenceon Uncertainty in Artificial Intelligence, AUAI Press, Arlington,Virginia, USA, pp. 109-116, 2009. |
[16]
|
M. Kloft, U. Brefeld, S. Sonnenburg, A. Zien. Lp-norm multiplekernel learning. Journal ofMachine Learning Research,vol. 12, pp. 953-997, 2011. |
[17]
|
X. Xu, I. W. Tsang, D. Xu. Soft margin multiple kernellearning. IEEE Transactions on Neural Networks andLearning Systems, vol. 24, no. 5, pp. 749-761, 2013. |
[18]
|
J. X. Xiao, J. Hays, K. A. Ehinger, A. Oliva, A. Torralba.Sun database: Large-scale scene recognition from abbey tozoo. In Proceedings of IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition, IEEE, SanFrancisco, USA, pp. 3485-3492, 2010. |
[19]
|
T. Ojala, M. Pietikainen, T. Maenpaa. Multiresolutiongray-scale and rotation invariant texture classification withlocal binary patterns. IEEE Transactions on Pattern Recognitionand Machine Intelligence, vol. 24, no. 7, pp. 971-987,2002. |
[20]
|
D. G. Lowe. Distinctive image features from scale-invariantkeypoints. International Journal of Computer Vision,vol. 60, no. 2, pp. 91-110, 2004. |
[21]
|
E. Shechtman, M. Irani. Matching local self-similaritiesacross images and videos. In Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition, IEEE,Minneapolis, USA, pp. 1-8, 2007. |
[22]
|
C. Cortes, V. Vapnik. Support-vector networks. MachineLearning, vol. 20, no. 3, pp. 273-297, 1995. |
[23]
|
B. E. Boser, I. M. Guyon, V. N. Vapnik. A training algorithmfor optimal margin classifiers. In Proceedings of the5th Annual Workshop on Computational Learning Theory,ACM, Pittsburgh, PA, USA, pp. 144-152, 1992. |
[24]
|
Z. L. Xu, R. Jin, H. Q. Yang, I. King, M. R. Lyu. Simpleand efficient multiple kernel learning by group lasso. In Proceedingsof the 27th International Conference on MachineLearning, Omnipress, Haifa, Israel, pp. 1175-1182, 2010. |
[25]
|
M. Szafranski, Y. Grandvalet, A. Rakotomamonjy. Compositekernel learning. Machine Learning, vol. 79, no. 1-2,pp. 73-103, 2010. |
[26]
|
S. Shalev-Shwartz, Y. Singer. Efficient learning of labelranking by soft projections onto polyhedra. Journal of MachineLearning Research, vol. 7, pp. 1567-1599, 2006. |
[27]
|
S. M. Lucas. Text locating competition results. In Proceedingsof the 8th International Conference on Document Analysisand Recognition, IEEE, Seoul, Korea, pp. 80-85, 2005. |
[28]
|
S. Y. Yan, X. X. Xu, D. Xu, S. Lin, X. L. Li. Beyond spatialpyramids: A new feature extraction framework withdense spatial sampling for image classification. In Proceedingsof the 12th European Conference on Computer Vision,Springer, Florence, Italy, pp. 464-478, 2012. |
[29]
|
C. C. Chang, C. J. Lin. Libsvm: A library for supportvector machines. ACM Transactions on Intelligent Systemsand Technology, vol. 2, no. 3, Article 27, 2011. |
[30]
|
C. Yi, Y. L. Tian. Text string detection from natural scenesby structure-based partition and grouping. IEEE Transactionson Image Processing, vol. 20, no. 9, pp. 2594-2605,2011. |