[1]
|
T. G. Gao, Z. Q. Chen, Z. Z. Yuan. Control for the synchronization of Chen system via a single nonlinear input. Journal of Control Theory and Applications, vol. 4, no. 3, pp. 297-301, 2006. |
[2]
|
G. R. Chen, X. N. Dong. From Chaos to Order Methodologies, Perspectives and Applications, Singapore: World Scientific, 1998. |
[3]
|
E. Ott, C. Grebogi, J. A. Yorke. Controlling chaos. Physical Review Letters, vol. 64, no. 11, pp. 1196-1199, 1990. |
[4]
|
Y. W. Wang, Z. H. Guan, H. O. Wang. Feedback and adaptive control for the synchronization of Chen system via a single variable. Physics Letters A, vol. 312, no. 1-2, pp. 34-40, 2003. |
[5]
|
G. R. Chen. Controlling Chaos and Bifurcations in Engineering Systems, Boca Raton, FL: CRC Press, 1999. |
[6]
|
M. Wan. Convergence and chaos analysis of a blind decorrelation neural network. Journal of Information and Computational Science, vol. 8, no. 5, pp. 791-798, 2011. |
[7]
|
Y. W. Deng, G. X. Sun, J. Q. E. Application of chaos optimization algorithm for robust controller design and simulation study. Journal of Information and Computational Science, vol. 7, no. 13, pp. 2897-2905, 2010. |
[8]
|
X. C. Shi, T. P. Zhang. Adaptive tracking control of uncertain MIMO nonlinear systems with time-varying delays and unmodeled dynamics. International Journal of Automation and Computing, vol. 10, no. 3, pp. 194-201, 2013. |
[9]
|
M. M. Zirkohi, M. M. Fateh, M. A. Shoorehdeli. Type-2 fuzzy control for a flexible-joint robot using voltage control strategy. International Journal of Automation and Computing, vol. 10, no. 3, pp. 242-255, 2013. |
[10]
|
E. W. Bai, K. E. Lonngren. Sequential synchronization of two Lorenz systems using active control. Chaos, Solitons and Fractals, vol. 11, no. 7, pp. 1041-1044, 2000. |
[11]
|
X. S. Yang, G. R. Chen. Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos, Solitons and Fractals, vol. 13, no. 6, pp. 1303-1308, 2002. |
[12]
|
G. R. Chen, X. Dong. On feedback control of chaotic continuous-time systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 9, pp. 591-601, 1993. |
[13]
|
M. T. Yassen. Chaos control of Chen chaotic dynamical system. Chaos, Solitons and Fractals, vol. 15, no. 2, pp. 271-283, 2003. |
[14]
|
H. N. Agiza. Controlling chaos for the dynamical system of coupled dynamos. Chaos, Solitons and Fractals, vol. 13, no. 2, pp. 341-352, 2002. |
[15]
|
E. N. Sanchez, J. P. Perez, M. Martinez, G. R. Chen. Chaos stabilization: An inverse optimal control approach. Latin American Applied Research, vol. 32, no. 1, pp. 111-114, 2002. |
[16]
|
M. T. Yassen. Adaptive control and synchronization of a modified Chuas circuit system. Applied Mathematics and Computation, vol. 135, no. 1, pp. 113-128, 2001. |
[17]
|
T. L. Liao, S. H. Lin. Adaptive control and synchronization of Lorenz systems. Journal of the Franklin Institute, vol. 336, no. 6, pp. 925-937, 1999. |
[18]
|
Y. Huang, X. S. Yang. Chaoticity of some chemical attractors: A computer assisted proof. Journal of Mathematical Chemistry, vol. 38, no. 1, pp. 107-117, 2005. |
[19]
|
K. Pyragas. Continuous control of chaos by self-controlling feedback. Physics Letters A, vol. 170, no. 6, pp. 421-428, 1992. |
[20]
|
S. G. Ruan, J. J. Wei. On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. Mathematical Medicine and Biology, vol. 18, no. 1, pp. 41-52, 2001. |
[21]
|
X. L. Li, J. J. Wei. On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos, Solitons and Fractals, vol. 26, no. 2, pp. 519-526, 2005. |
[22]
|
Y. L. Song, J. J. Wei. Bifurcation analysis for Chens system with delayed feedback and its application to control of chaos. Chaos, Solitons and Fractals, vol. 22, no. 1, pp. 75-91, 2004. |
[23]
|
Y. Yang. Hopf bifurcation in a two-competitor, one-prey system with time delay. Applied Mathematics and Computation, vol. 214, no. 1, pp. 228-235, 2009. |
[24]
|
Y. Kuang. Delay Differential Equations: With Applications in Population Dynamics, San Diego: Academic Press, Incorporated, 1993. |
[25]
|
J. K. Hale. Theory of Functional Differential Equation, Berlin: Springer-Verlag, 1977. |