[1]
|
M. Vomlelová, J. Vomlel. Troubleshooting: NP-hardness and solution methods. Soft Computing, vol. 7, no. 5, pp. 357-368, 2003. |
[2]
|
G. Shafer. Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning, vol. 4, no. 5-6, pp. 323-362, 1990. |
[3]
|
L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, vol. 30, no. 3-4, pp. 407-428, 1975. |
[4]
|
S. Sezer, A. E. Atalay. Dynamic modeling and fuzzy logic control of vibrations of a railway vehicle for different track irregularities. Simulation Modelling Practice and Theory, vol. 19, no. 9, pp. 1873-1894, 2011. |
[5]
|
A. Widodo, B. S. Yang, T. Han. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Systems with Applications, vol. 32, no. 2, pp. 299-312, 2007. |
[6]
|
J. Ding, Y. Cao, E. Mpofu, Z. P. Shi. A hybrid support vector machine and fuzzy reasoning based fault diagnosis and rescue system for stable glutamate fermentation. Chemical Engineering Research and Design, vol. 90, no. 9, pp. 1197-1207, 2012. |
[7]
|
E. Zio, G. Gola. A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery. Reliability Engineering and System Safety, vol. 94, no. 1, pp. 78-88, 2009. |
[8]
|
Z. Ghahramani, M. I. Jordan, P. Smyth. Factorial hidden Markov models. Machine Learning, vol. 29, no. 2-3, pp. 245-273, 1997. |
[9]
|
J. V. Gael, Y. W. Teh, Z. Ghahramani. The infinite factorial hidden Markov model. In Proceedings of the 22nd Annual Conference on Neural Information Processing Systems, Curran Associates, Vancouver, Canada, pp. 1697-1704, 2008. |
[10]
|
J. Pearl. Causality: Models, Reasoning and Inference, 2nd ed., New York, USA: Cambridge University Press, 2009. |
[11]
|
P. J. F. Lucas. Bayesian network modelling through qualitative patterns. Artificial Intelligence, vol. 163, no. 2, pp. 233-263, 2005. |
[12]
|
F. V. Jensen, T. D. Nielsen. Bayesian Networks and Decision Graphs, 2nd ed., New York, USA: Springer, 2007. |
[13]
|
D. Koller, N. Friedman. Probabilistic Graphical Models: Principles and Techniques, Cambridge, MA, USA: MIT Press, 2009. |
[14]
|
P. Larrañaga, S. Moral. Probabilistic graphical models in artificial intelligence. Applied Soft Computing, vol. 11, no. 2, pp. 1511-1528, 2011. |
[15]
|
P. Dagum, M. Luby. Approximately probabilistic reasoning in Bayesian belief networks is NP-hard. Artificial Intelligence, vol. 60, no. 1, pp. 141-153, 1993. |
[16]
|
G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, vol. 42, no. 2-3, pp. 393-405, 1990. |
[17]
|
M. Steinder, A. S. Sethi. A survey of fault localization techniques in computer networks. Science of Computer Programming, vol. 53, pp. 165-194, 2004. |
[18]
|
N. L. Zhang, D. Poole. Exploiting causal independence in Bayesian network inference. Journal of Artificial Intelligence Research, vol. 5, no. 1, pp. 301-328, 1996. |
[19]
|
A. Darwiche. Recursive conditioning. Artificial Intelligence, vol. 126, no. 1-2, pp. 5-41, 2001. |
[20]
|
K. Yue, Y. Yao, J. Li, W. Y. Liu. Qualitative probabilistic networks with reduced ambiguities. Applied Intelligence, vol. 33, no. 2, pp. 159-178, 2008. |
[21]
|
A. Darwiche. A differential approach to inference in Bayesian Networks. Journal of the ACM, vol. 50, no. 3, pp. 280-305, 2003. |
[22]
|
F. J. Díez, S. F. Galán. Efficient computation for the noisy MAX. International Journal of Intelligent Systems, vol. 18, no. 2, pp. 165-177, 2003. |
[23]
|
W. Li, P. Poupart, P. van Beek. Exploiting causal independence using weighted model counting. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, American Association for Artificial Intelligence, Chicago, USA, pp. 337-343, 2008. |
[24]
|
M. A. J. van Gerven, P. J. F. Lucas, T. P. van der Weide. A generic qualitative characterization of independence of causal influence. International Journal of Approximate Reasoning, vol. 48, no. 1, pp. 214-236, 2008. |
[25]
|
S. Bahrampour, B. Moshiri, K. Salahshoor. Weighted and constrained possibilistic C-means clustering for online fault detection and isolation. Applied Intelligence, vol. 35, no. 2, pp. 269-284, 2011. |
[26]
|
G. E. Yap, A. H. Tan, H. H. Pang. Explaining inferences in Bayesian networks. Applied Intelligence, vol. 29, no. 3, pp. 263-278, 2007. |
[27]
|
Q. Zhang. Dynamic uncertain causality graph for knowledge representation and reasoning: Discrete DAG cases. Journal of Computer Science and Technology, vol. 27, no. 1, pp. 1-23, 2012. |
[28]
|
P. Avi. Sufficiency, separability and temporal probabilistic models. In Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Seattle, USA, pp. 421-428, 2001. |
[29]
|
L. E. Widman, K. A. Loparo. Artificial intelligence, simulation, and modeling. Interfaces, vol. 20, no. 2, pp. 48-66, 1990. |