A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis

Chun-Ling Dong Qin Zhang Shi-Chao Geng

Chun-Ling Dong, Qin Zhang, Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(3): 288-298. doi: 10.1007/s11633-014-0791-8
引用本文: Chun-Ling Dong, Qin Zhang, Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(3): 288-298. doi: 10.1007/s11633-014-0791-8
Chun-Ling Dong, Qin Zhang and Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis. International Journal of Automation and Computing, vol. 11, no. 3, pp. 288-298, 2014 doi:  10.1007/s11633-014-0791-8
Citation: Chun-Ling Dong, Qin Zhang and Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis. International Journal of Automation and Computing, vol. 11, no. 3, pp. 288-298, 2014 doi:  10.1007/s11633-014-0791-8

A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis

doi: 10.1007/s11633-014-0791-8
基金项目: 

This work was supported by the National Natural Science Foundation of China (Nos. 61050005 and 61273330), Research Foundation for the Doctoral Program of China Ministry of Education (No. 20120002110037), the 2014 Teaching Reform Project of Shandong Normal University, and Development Project of China Guangdong Nuclear Power Group (No. CNPRI-ST10P005).

详细信息
    作者简介:

    Shi-Chao Geng received his B. Sc. and M. Sc. degrees from Jinan University, China in 2006 and 2010, respectively. He is currently a Ph. D. candidate at School of Computer Science and Engineering, Beihang University. His research interests include uncertain artificial intelligence and graphical model. E-mail: gengsc@hotmail.com

A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis

Funds: 

This work was supported by the National Natural Science Foundation of China (Nos. 61050005 and 61273330), Research Foundation for the Doctoral Program of China Ministry of Education (No. 20120002110037), the 2014 Teaching Reform Project of Shandong Normal University, and Development Project of China Guangdong Nuclear Power Group (No. CNPRI-ST10P005).

  • 摘要: Online automatic fault diagnosis in industrial systems is essential for guaranteeing safe, reliable and efficient operations. However, difficulties associated with computational overload, ubiquitous uncertainties and insufficient fault samples hamper the engi-neering application of intelligent fault diagnosis technology. Geared towards the settlement of these problems, this paper introduces the method of dynamic uncertain causality graph, which is a new attempt to model complex behaviors of real-world systems under uncertainties. The visual representation to causality pathways and self-relied "chaining" inference mechanisms are analyzed. In particular, some solutions are investigated for the diagnostic reasoning algorithm to aim at reducing its computational complexity and improving the robustness to potential losses and imprecisions in observations. To evaluate the effectiveness and performance of this method, experiments are conducted using both synthetic calculation cases and generator faults of a nuclear power plant. The results manifest the high diagnostic accuracy and efficiency, suggesting its practical significance in large-scale industrial applications.
  • [1] M. Vomlelová, J. Vomlel. Troubleshooting: NP-hardness and solution methods. Soft Computing, vol. 7, no. 5, pp. 357-368, 2003.
    [2] G. Shafer. Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning, vol. 4, no. 5-6, pp. 323-362, 1990.
    [3] L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, vol. 30, no. 3-4, pp. 407-428, 1975.
    [4] S. Sezer, A. E. Atalay. Dynamic modeling and fuzzy logic control of vibrations of a railway vehicle for different track irregularities. Simulation Modelling Practice and Theory, vol. 19, no. 9, pp. 1873-1894, 2011.
    [5] A. Widodo, B. S. Yang, T. Han. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Systems with Applications, vol. 32, no. 2, pp. 299-312, 2007.
    [6] J. Ding, Y. Cao, E. Mpofu, Z. P. Shi. A hybrid support vector machine and fuzzy reasoning based fault diagnosis and rescue system for stable glutamate fermentation. Chemical Engineering Research and Design, vol. 90, no. 9, pp. 1197-1207, 2012.
    [7] E. Zio, G. Gola. A neuro-fuzzy technique for fault diagnosis and its application to rotating machinery. Reliability Engineering and System Safety, vol. 94, no. 1, pp. 78-88, 2009.
    [8] Z. Ghahramani, M. I. Jordan, P. Smyth. Factorial hidden Markov models. Machine Learning, vol. 29, no. 2-3, pp. 245-273, 1997.
    [9] J. V. Gael, Y. W. Teh, Z. Ghahramani. The infinite factorial hidden Markov model. In Proceedings of the 22nd Annual Conference on Neural Information Processing Systems, Curran Associates, Vancouver, Canada, pp. 1697-1704, 2008.
    [10] J. Pearl. Causality: Models, Reasoning and Inference, 2nd ed., New York, USA: Cambridge University Press, 2009.
    [11] P. J. F. Lucas. Bayesian network modelling through qualitative patterns. Artificial Intelligence, vol. 163, no. 2, pp. 233-263, 2005.
    [12] F. V. Jensen, T. D. Nielsen. Bayesian Networks and Decision Graphs, 2nd ed., New York, USA: Springer, 2007.
    [13] D. Koller, N. Friedman. Probabilistic Graphical Models: Principles and Techniques, Cambridge, MA, USA: MIT Press, 2009.
    [14] P. Larrañaga, S. Moral. Probabilistic graphical models in artificial intelligence. Applied Soft Computing, vol. 11, no. 2, pp. 1511-1528, 2011.
    [15] P. Dagum, M. Luby. Approximately probabilistic reasoning in Bayesian belief networks is NP-hard. Artificial Intelligence, vol. 60, no. 1, pp. 141-153, 1993.
    [16] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, vol. 42, no. 2-3, pp. 393-405, 1990.
    [17] M. Steinder, A. S. Sethi. A survey of fault localization techniques in computer networks. Science of Computer Programming, vol. 53, pp. 165-194, 2004.
    [18] N. L. Zhang, D. Poole. Exploiting causal independence in Bayesian network inference. Journal of Artificial Intelligence Research, vol. 5, no. 1, pp. 301-328, 1996.
    [19] A. Darwiche. Recursive conditioning. Artificial Intelligence, vol. 126, no. 1-2, pp. 5-41, 2001.
    [20] K. Yue, Y. Yao, J. Li, W. Y. Liu. Qualitative probabilistic networks with reduced ambiguities. Applied Intelligence, vol. 33, no. 2, pp. 159-178, 2008.
    [21] A. Darwiche. A differential approach to inference in Bayesian Networks. Journal of the ACM, vol. 50, no. 3, pp. 280-305, 2003.
    [22] F. J. Díez, S. F. Galán. Efficient computation for the noisy MAX. International Journal of Intelligent Systems, vol. 18, no. 2, pp. 165-177, 2003.
    [23] W. Li, P. Poupart, P. van Beek. Exploiting causal independence using weighted model counting. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, American Association for Artificial Intelligence, Chicago, USA, pp. 337-343, 2008.
    [24] M. A. J. van Gerven, P. J. F. Lucas, T. P. van der Weide. A generic qualitative characterization of independence of causal influence. International Journal of Approximate Reasoning, vol. 48, no. 1, pp. 214-236, 2008.
    [25] S. Bahrampour, B. Moshiri, K. Salahshoor. Weighted and constrained possibilistic C-means clustering for online fault detection and isolation. Applied Intelligence, vol. 35, no. 2, pp. 269-284, 2011.
    [26] G. E. Yap, A. H. Tan, H. H. Pang. Explaining inferences in Bayesian networks. Applied Intelligence, vol. 29, no. 3, pp. 263-278, 2007.
    [27] Q. Zhang. Dynamic uncertain causality graph for knowledge representation and reasoning: Discrete DAG cases. Journal of Computer Science and Technology, vol. 27, no. 1, pp. 1-23, 2012.
    [28] P. Avi. Sufficiency, separability and temporal probabilistic models. In Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Seattle, USA, pp. 421-428, 2001.
    [29] L. E. Widman, K. A. Loparo. Artificial intelligence, simulation, and modeling. Interfaces, vol. 20, no. 2, pp. 48-66, 1990.
  • [1] Zhao-Hua Liu, Xu-Dong Meng, Hua-Liang Wei, Liang Chen, Bi-Liang Lu, Zhen-Heng Wang, Lei Chen.  A Regularized LSTM Method for Predicting Remaining Useful Life of Rolling Bearings . International Journal of Automation and Computing, 2021, (): 1-13. doi: 10.1007/s11633-020-1276-6
    [2] Farzam Matinfar.  A Computational Model for Measuring Trust in Mobile Social Networks Using Fuzzy Logic . International Journal of Automation and Computing, 2020, 17(6): 812-821. doi: 10.1007/s11633-020-1232-5
    [3] R. Bharathi, R. Selvarani.  Hidden Markov Model Approach for Software Reliability Estimation with Logic Error . International Journal of Automation and Computing, 2020, 17(2): 305-320. doi: 10.1007/s11633-019-1214-7
    [4] Erphan A. Bhuiyan, Md. Maeenul Azad Akhand, Sajal K. Das, Md. F. Ali, Z. Tasneem, Md. R. Islam, D. K. Saha, Faisal R. Badal, Md. H. Ahamed, S. I. Moyeen.  A Survey on Fault Diagnosis and Fault Tolerant Methodologies for Permanent Magnet Synchronous Machines . International Journal of Automation and Computing, 2020, 17(6): 763-787. doi: 10.1007/s11633-020-1250-3
    [5] Ann Smith, Fengshou Gu, Andrew D. Ball.  An Approach to Reducing Input Parameter Volume for Fault Classifiers . International Journal of Automation and Computing, 2019, 16(2): 199-212. doi: 10.1007/s11633-018-1162-7
    [6] Xiao-Hong Qiu, Yu-Ting Hu, Bo Li.  Sequential Fault Diagnosis Using an Inertial Velocity Difierential Evolution Algorithm . International Journal of Automation and Computing, 2019, 16(3): 389-397. doi: 10.1007/s11633-016-1008-0
    [7] Philip Cross, Xiandong Ma.  Model-based and Fuzzy Logic Approaches to Condition Monitoring of Operational Wind Turbines . International Journal of Automation and Computing, 2015, 12(1): 25-34. doi: 10.1007/s11633-014-0863-9
    [8] Guo-Jin Feng, James Gu, Dong Zhen, Mustafa Aliwan, Feng-Shou Gu, Andrew D. Ball.  Implementation of Envelope Analysis on a Wireless Condition Monitoring System for Bearing Fault Diagnosis . International Journal of Automation and Computing, 2015, 12(1): 14-24. doi: 10.1007/s11633-014-0862-x
    [9] Quan Liang, Yuan-Zhuo Wang, Yong-Hui Zhang.  Resource Virtualization Model Using Hybrid-graph Representation and Converging Algorithm for Cloud Computing . International Journal of Automation and Computing, 2013, 10(6): 597-606. doi: 10.1007/s11633-013-0758-1
    [10] Mou Chen,  Chang-Sheng Jiang,  Qing-Xian Wu.  Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network . International Journal of Automation and Computing, 2008, 5(4): 401-405. doi: 10.1007/s11633-008-0401-8
    [11] Marcello Bonfè, Paolo Castaldi, Walter Geri, Silvio Simani.  Design and Performance Evaluation of Residual Generators for the FDI of an Aircraft . International Journal of Automation and Computing, 2007, 4(2): 156-163. doi: 10.1007/s11633-007-0156-7
    [12] Sing Kiong Nguang, Ping Zhang, Steven X. Ding.  Parity Relation Based Fault Estimation for Nonlinear Systems: An LMI Approach . International Journal of Automation and Computing, 2007, 4(2): 164-168. doi: 10.1007/s11633-007-0164-7
    [13] S. Prabhudeva,  A. K. Verma.  Coverage Modeling and Reliability Analysis Using Multi-state Function . International Journal of Automation and Computing, 2007, 4(4): 380-387. doi: 10.1007/s11633-007-0380-1
    [14] Jochen Aβfalg, Frank Allgöwer.  Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models . International Journal of Automation and Computing, 2007, 4(2): 141-148. doi: 10.1007/s11633-007-0141-1
    [15] Erfu Yang, Hongjun Xiang, Dongbing Gu, Zhenpeng Zhang.  A Comparative Study of Genetic Algorithm Parameters for the Inverse Problem-based Fault Diagnosis of Liquid Rocket Propulsion Systems . International Journal of Automation and Computing, 2007, 4(3): 255-261. doi: 10.1007/s11633-007-0255-5
    [16] Wei-Hua Gui,  Chun-Hua Yang,  Jing Teng.  Intelligent Fault Diagnosis in Lead-zinc Smelting Process . International Journal of Automation and Computing, 2007, 4(2): 135-140. doi: 10.1007/s11633-007-0135-z
    [17] Ling-Lai Li,  Dong-Hua Zhou,  Ling Wang.  Fault Diagnosis of Nonlinear Systems Based on Hybrid PSOSA Optimization Algorithm . International Journal of Automation and Computing, 2007, 4(2): 183-188. doi: 10.1007/s11633-007-0183-4
    [18] Marek Kowal,  Józef Korbicz.  Fault Detection under Fuzzy Model Uncertainty . International Journal of Automation and Computing, 2007, 4(2): 117-124. doi: 10.1007/s11633-007-0117-1
    [19] You-Qing Wang, Dong-Hua Zhou, Li-Heng Liu.  Robust and Active Fault-tolerant Control for a Class of Nonlinear Uncertain Systems . International Journal of Automation and Computing, 2006, 3(3): 309-313. doi: 10.1007/s11633-006-0309-0
    [20] Jia Tian, Xun Chen, Sheng-Ping Dong.  Multi-Modal Reasoning Medical Diagnosis System Integrated With Probabilistic Reasoning . International Journal of Automation and Computing, 2005, 2(2): 134-143. doi: 10.1007/s11633-005-0134-x
  • 加载中
计量
  • 文章访问数:  5259
  • HTML全文浏览量:  36
  • PDF下载量:  1328
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-10
  • 修回日期:  2013-07-24

A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis

doi: 10.1007/s11633-014-0791-8
    基金项目:

    This work was supported by the National Natural Science Foundation of China (Nos. 61050005 and 61273330), Research Foundation for the Doctoral Program of China Ministry of Education (No. 20120002110037), the 2014 Teaching Reform Project of Shandong Normal University, and Development Project of China Guangdong Nuclear Power Group (No. CNPRI-ST10P005).

    作者简介:

    Shi-Chao Geng received his B. Sc. and M. Sc. degrees from Jinan University, China in 2006 and 2010, respectively. He is currently a Ph. D. candidate at School of Computer Science and Engineering, Beihang University. His research interests include uncertain artificial intelligence and graphical model. E-mail: gengsc@hotmail.com

摘要: Online automatic fault diagnosis in industrial systems is essential for guaranteeing safe, reliable and efficient operations. However, difficulties associated with computational overload, ubiquitous uncertainties and insufficient fault samples hamper the engi-neering application of intelligent fault diagnosis technology. Geared towards the settlement of these problems, this paper introduces the method of dynamic uncertain causality graph, which is a new attempt to model complex behaviors of real-world systems under uncertainties. The visual representation to causality pathways and self-relied "chaining" inference mechanisms are analyzed. In particular, some solutions are investigated for the diagnostic reasoning algorithm to aim at reducing its computational complexity and improving the robustness to potential losses and imprecisions in observations. To evaluate the effectiveness and performance of this method, experiments are conducted using both synthetic calculation cases and generator faults of a nuclear power plant. The results manifest the high diagnostic accuracy and efficiency, suggesting its practical significance in large-scale industrial applications.

English Abstract

Chun-Ling Dong, Qin Zhang, Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(3): 288-298. doi: 10.1007/s11633-014-0791-8
引用本文: Chun-Ling Dong, Qin Zhang, Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(3): 288-298. doi: 10.1007/s11633-014-0791-8
Chun-Ling Dong, Qin Zhang and Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis. International Journal of Automation and Computing, vol. 11, no. 3, pp. 288-298, 2014 doi:  10.1007/s11633-014-0791-8
Citation: Chun-Ling Dong, Qin Zhang and Shi-Chao Geng. A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis. International Journal of Automation and Computing, vol. 11, no. 3, pp. 288-298, 2014 doi:  10.1007/s11633-014-0791-8
参考文献 (29)

目录

    /

    返回文章
    返回