[1]
|
S. Bharadwaj, A. V. Rao, K. D. Mease. Entry trajectory tracking law via feedback linearization. Journal of Guidance, Control, and Dynamics, vol.21, no.5, pp.726-732, 1998. |
[2]
|
E. Mooij, I. Barkana. Stability analysis of an adaptive guidance and control system applied to a winged re-entry vehicle. In Proceedings of AIAA Guidance, Navigation, and Control Conference, AIAA, San Francisco, CA, USA, pp.4547-4559, 2005. |
[3]
|
L. Fiorentini, A. Serrani. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica, vol.48, no.7, pp.1248-1261, 2012. |
[4]
|
K. K. Gupta, L. S. Voelker. Aeroelastic simulation of hypersonic flight vehicles. AIAA Journal, vol.50, no.3, pp.717-723, 2012. |
[5]
|
W. R. van Soest, Q. P. Chu, J. A. Mulder. Combined feedback linearization and constrained model predictive control for entry flight. Journal of Guidance, Control, and Dynamics, vol.29, no.2, pp.427-434, 2006. |
[6]
|
Z. J. Shen, P. Lu. On-board entry trajectory planning expanded to sub-orbital flight. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, Austin, Texas, USA, AIAA 2003-5736, 2003. |
[7]
|
W. J. Rugh, J. S. Shamma. Research on gain scheduling. Automatica, vol.36, no.10, pp.1401-1425, 2000. |
[8]
|
D. Enns, D. Bugajski, R. Hendrick, G. Stein. Dynamic inversion: An evolving methodology for flight control design. International Journal of Control, vol.59, no.1, pp.71-91, 1994. |
[9]
|
D. Ito, J. Georgie, J. Valasek, D. T. Ward. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion, Final Technical Report NASA TP-2002-210771, Flight Simulation Laboratory, Texas Engineering Experiment Station Texas A&M University, USA, 2002. |
[10]
|
H. J. Xu, M. D. Mirmirani, P. A. Ioannou. Adaptive sliding mode control design for a hypersonic flight vehicle. Journal of Guidance, Control, and Dynamics, vol.27, no.5, pp.829-838, 2004. |
[11]
|
A. Rahideh, A. H. Bajodah, M. H. Shaheed. Real time adaptive nonlinear model inversion control of a twin rotor MIMO system using neural networks. Engineering Applications of Artificial Intelligence, vol.25, no.6, pp.1289-1297, 2012. |
[12]
|
Z. Q. Gao, Y. Huang, J. Q. Han. An alternative paradigm for control system design. In Proceedings of the 40th IEEE Conference on Design and Control, IEEE, Orlando, Florida, USA, pp.4578-4585, 2001. |
[13]
|
J. Q. Han. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, vol.56, no.3, pp.900-906, 2009. |
[14]
|
J. Q. Han. Active Disturbance Rejection Control Technique — The Technique for Estimating and Compensating the Uncertainties, Beijing: National Defense Industry Press, 2008. (in Chinese) |
[15]
|
B. Z. Guo, Z. L. Zhao. On convergence of the nonlinear active disturbance rejection control for MIMO systems. SIAM Journal on Control and Optimization, vol.51, no.2, pp.1727-1757, 2013. |
[16]
|
Q. Zheng, Z. Z. Chen, Z. Q. Gao. A practical approach to disturbance decoupling control. Control Engineering Practice, vol.17, no.9, pp.1016-1025, 2009. |
[17]
|
R. Kotina, Q. Zheng, A. J. van den Bogert, Z. Q. Gao. Active disturbance rejection control for human postural sway. In Proceedings of American Control Conference, IEEE, San Francisco, CA, USA, pp.4081-4086, 2011. |
[18]
|
F. Léonard, A. Martini, G. Abba. Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts. IEEE Transactions on Control Systems Technology, vol.20, no.1, pp.154-163, 2012. |
[19]
|
Z. Ren, J. F. Fan, J. J. Li. A new robust controller for flight control system of hypersonic flying vehicle. Advanced Materials Research, vol.562-564, pp.1682-1688, 2012. |
[20]
|
Y. G. Zhu, G. L. Fan, J. Q. Yi. Controller design for flying boats taking off from water with regular waves. In Proceedings of 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, pp.480-485, 2012. |
[21]
|
X. X. Fang, Q. Lin, Y. X. Wang, L. L. Zheng. Control strategy design for the transitional mode of tiltrotor UAV. In Proceedings of the 10th IEEE International Conference on Industrial Informatics, Beijing, China, pp.248-253, 2012. |
[22]
|
J. D. Shaughnessy, S. Z. Pinckney, J. D. Mcminn. Hypersonic Vehicle Simulation Model: Winged-cone Configuration, Technical Report NASA TM-102610, NASA Langley Research Center, USA, 1990. |
[23]
|
S. Keshmiri, R. Colgren, M. Mirmirani. Development of an aerodynamic database for a generic hypersonic air vehicle. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, San Francisco, CA, USA, AIAA 2005-6257, 2005. |
[24]
|
S. Keshmiri, R. Colgren, M. Mirmirani. Six-DOF modeling and simulation of a generic hypersonic vehicle for control and navigation purposes. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, Keystone, Colorado, USA, pp.4680-4689, 2006. |
[25]
|
J. Mawhin, J. R. Ward Jr. Periodic solutions of some forced Liénard differential equations at resonance. Archiv der Mathematik, vol.41, no.4, pp.337-351, 1983. |
[26]
|
J. Sugie, Y. Amano. Global asymptotic stability of nonautonomous systems of Liénard type. Journal of Mathematical Analysis and Applications, vol.289, no.2, pp.673-690, 2004. |
[27]
|
C. Tunç, E. Tunç. On the asymptotic behavior of solutions of certain second-order differential equations. Journal of the Franklin Institute, vol.344, no.5, pp.391-398, 2007. |
[28]
|
Y. Huang, J. Q. Han. The self-stable region approach for second order nonlinear uncertain systems. In Proceedings of 1999 IFAC World Congress, IFAC, Beijing, China, pp.135-140, 1999. |
[29]
|
J. Q. Han, R. Zhang. Error analysis of the second order ESO. Journal of Systems Science and Mathematical Sciences, vol.19, no.4, pp.465-471, 1999. |
[30]
|
Z. X. Gan, J. Q. Han. Construction of Lyapunov function for 2-order ESO. In Proceedings of the 21st Chinese Control Conference, Beijing, China, pp.354-357, 2002. (in Chinese) |
[31]
|
S. A. Snell, D. F. Enns, W. L. Garrard Jr. Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of Guidance, Control, and Dynamics, vol.15, no.4, pp.976-984, 1992. |
[32]
|
Z. Q. Pu, X. M. Tan, G. L. Fan, J. Q. Yi. Design of entry trajectory tracking law for suborbital hypersonic vehicle via inversion control. In Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China, pp.1092-1097, 2012. |
[33]
|
H. K. Khalil. Nonlinear Systems, 3rd ed., Upper Saddle River, New Jersey: Prentice Hall Press, 2001. |
[34]
|
Q. Zheng, L. Q. Gao, Z. Q. Gao. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In Proceedings of the 46th IEEE Conference on Decision and Control, IEEE, New Orleans, LA, USA, pp.3501-3506, 2007. |
[35]
|
W. K. Zhou, S. Shao, Z. Q. Gao. A stability study of the active disturbance rejection control problem by a singular perturbation approach. Applied Mathematical Sciences, vol.3, no.10, pp.491-508, 2009. |
[36]
|
T. Yoshizawa. Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, New York: Springer-Verlag, 1975. |
[37]
|
G. E. H. Reuter. A boundedness theorem for nonlinear differential equations of the second order. Mathematical Proceedings of the Cambridge Philosophical Society, vol.47, no.1, pp.49-54, 1951. |
[38]
|
A. Kroopnick. Properties of solutions to a generalized Liénard equation with forcing term. Applied Mathematics E-Notes, vol.8, pp.40-44, 2008. |