An Integrated Approach to Hypersonic Entry Attitude Control

Zhi-Qiang Pu Ru-Yi Yuan Xiang-Min Tan Jian-Qiang Yi

Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan, Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(1): 39-50. doi: 10.1007/s11633-014-0764-y
引用本文: Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan, Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(1): 39-50. doi: 10.1007/s11633-014-0764-y
Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan and Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control. International Journal of Automation and Computing, vol. 11, no. 1, pp. 39-50, 2014 doi:  10.1007/s11633-014-0764-y
Citation: Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan and Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control. International Journal of Automation and Computing, vol. 11, no. 1, pp. 39-50, 2014 doi:  10.1007/s11633-014-0764-y

An Integrated Approach to Hypersonic Entry Attitude Control

doi: 10.1007/s11633-014-0764-y
基金项目: 

This work was supported by National Natural Science Foundation of China (Nos.61273149, 61203003) and the Special Project for Innovation Methods of MOST (Nos.2012IM010200 and B1320133020).

An Integrated Approach to Hypersonic Entry Attitude Control

Funds: 

This work was supported by National Natural Science Foundation of China (Nos.61273149, 61203003) and the Special Project for Innovation Methods of MOST (Nos.2012IM010200 and B1320133020).

  • 摘要: This paper presents an integrated approach based on dynamic inversion (DI) and active disturbance rejection control (ADRC) to the entry attitude control of a generic hypersonic vehicle (GHV). DI is firstly used to cancel the nonlinearities of the GHV entry model to construct a basic attitude controller. To enhance the control performance and system robustness to inevitable disturbances, ADRC techniques, including the arranged transient process (ATP), nonlinear feedback (NF), and most importantly the extended state observer (ESO), are integrated with the basic DI controller. As one primary task, the stability and estimation error of the second-order nonlinear ESO are analyzed from a brand new perspective: the nonlinear ESO is treated as a specific form of forced Linard system. Abundant qualitative properties of the Linard system are utilized to yield comprehensive theorems on nonlinear ESO solution behaviors, such as the boundedness, convergence, and existence of periodic solutions. Phase portraits of ESO estimation error dynamics are given to validate our analysis. At last, three groups of simulations, including comparative simulations with modeling errors, Monte Carlo runs with parametric uncertainties, and a six degrees-of-freedom reference entry trajectory tracking are executed, which demonstrate the superiority of the proposed integrated controller over the basic DI controller.
  • [1] S. Bharadwaj, A. V. Rao, K. D. Mease. Entry trajectory tracking law via feedback linearization. Journal of Guidance, Control, and Dynamics, vol.21, no.5, pp.726-732, 1998.
    [2] E. Mooij, I. Barkana. Stability analysis of an adaptive guidance and control system applied to a winged re-entry vehicle. In Proceedings of AIAA Guidance, Navigation, and Control Conference, AIAA, San Francisco, CA, USA, pp.4547-4559, 2005.
    [3] L. Fiorentini, A. Serrani. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica, vol.48, no.7, pp.1248-1261, 2012.
    [4] K. K. Gupta, L. S. Voelker. Aeroelastic simulation of hypersonic flight vehicles. AIAA Journal, vol.50, no.3, pp.717-723, 2012.
    [5] W. R. van Soest, Q. P. Chu, J. A. Mulder. Combined feedback linearization and constrained model predictive control for entry flight. Journal of Guidance, Control, and Dynamics, vol.29, no.2, pp.427-434, 2006.
    [6] Z. J. Shen, P. Lu. On-board entry trajectory planning expanded to sub-orbital flight. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, Austin, Texas, USA, AIAA 2003-5736, 2003.
    [7] W. J. Rugh, J. S. Shamma. Research on gain scheduling. Automatica, vol.36, no.10, pp.1401-1425, 2000.
    [8] D. Enns, D. Bugajski, R. Hendrick, G. Stein. Dynamic inversion: An evolving methodology for flight control design. International Journal of Control, vol.59, no.1, pp.71-91, 1994.
    [9] D. Ito, J. Georgie, J. Valasek, D. T. Ward. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion, Final Technical Report NASA TP-2002-210771, Flight Simulation Laboratory, Texas Engineering Experiment Station Texas A&M University, USA, 2002.
    [10] H. J. Xu, M. D. Mirmirani, P. A. Ioannou. Adaptive sliding mode control design for a hypersonic flight vehicle. Journal of Guidance, Control, and Dynamics, vol.27, no.5, pp.829-838, 2004.
    [11] A. Rahideh, A. H. Bajodah, M. H. Shaheed. Real time adaptive nonlinear model inversion control of a twin rotor MIMO system using neural networks. Engineering Applications of Artificial Intelligence, vol.25, no.6, pp.1289-1297, 2012.
    [12] Z. Q. Gao, Y. Huang, J. Q. Han. An alternative paradigm for control system design. In Proceedings of the 40th IEEE Conference on Design and Control, IEEE, Orlando, Florida, USA, pp.4578-4585, 2001.
    [13] J. Q. Han. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, vol.56, no.3, pp.900-906, 2009.
    [14] J. Q. Han. Active Disturbance Rejection Control Technique — The Technique for Estimating and Compensating the Uncertainties, Beijing: National Defense Industry Press, 2008. (in Chinese)
    [15] B. Z. Guo, Z. L. Zhao. On convergence of the nonlinear active disturbance rejection control for MIMO systems. SIAM Journal on Control and Optimization, vol.51, no.2, pp.1727-1757, 2013.
    [16] Q. Zheng, Z. Z. Chen, Z. Q. Gao. A practical approach to disturbance decoupling control. Control Engineering Practice, vol.17, no.9, pp.1016-1025, 2009.
    [17] R. Kotina, Q. Zheng, A. J. van den Bogert, Z. Q. Gao. Active disturbance rejection control for human postural sway. In Proceedings of American Control Conference, IEEE, San Francisco, CA, USA, pp.4081-4086, 2011.
    [18] F. Léonard, A. Martini, G. Abba. Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts. IEEE Transactions on Control Systems Technology, vol.20, no.1, pp.154-163, 2012.
    [19] Z. Ren, J. F. Fan, J. J. Li. A new robust controller for flight control system of hypersonic flying vehicle. Advanced Materials Research, vol.562-564, pp.1682-1688, 2012.
    [20] Y. G. Zhu, G. L. Fan, J. Q. Yi. Controller design for flying boats taking off from water with regular waves. In Proceedings of 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, pp.480-485, 2012.
    [21] X. X. Fang, Q. Lin, Y. X. Wang, L. L. Zheng. Control strategy design for the transitional mode of tiltrotor UAV. In Proceedings of the 10th IEEE International Conference on Industrial Informatics, Beijing, China, pp.248-253, 2012.
    [22] J. D. Shaughnessy, S. Z. Pinckney, J. D. Mcminn. Hypersonic Vehicle Simulation Model: Winged-cone Configuration, Technical Report NASA TM-102610, NASA Langley Research Center, USA, 1990.
    [23] S. Keshmiri, R. Colgren, M. Mirmirani. Development of an aerodynamic database for a generic hypersonic air vehicle. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, San Francisco, CA, USA, AIAA 2005-6257, 2005.
    [24] S. Keshmiri, R. Colgren, M. Mirmirani. Six-DOF modeling and simulation of a generic hypersonic vehicle for control and navigation purposes. In Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, Keystone, Colorado, USA, pp.4680-4689, 2006.
    [25] J. Mawhin, J. R. Ward Jr. Periodic solutions of some forced Liénard differential equations at resonance. Archiv der Mathematik, vol.41, no.4, pp.337-351, 1983.
    [26] J. Sugie, Y. Amano. Global asymptotic stability of nonautonomous systems of Liénard type. Journal of Mathematical Analysis and Applications, vol.289, no.2, pp.673-690, 2004.
    [27] C. Tunç, E. Tunç. On the asymptotic behavior of solutions of certain second-order differential equations. Journal of the Franklin Institute, vol.344, no.5, pp.391-398, 2007.
    [28] Y. Huang, J. Q. Han. The self-stable region approach for second order nonlinear uncertain systems. In Proceedings of 1999 IFAC World Congress, IFAC, Beijing, China, pp.135-140, 1999.
    [29] J. Q. Han, R. Zhang. Error analysis of the second order ESO. Journal of Systems Science and Mathematical Sciences, vol.19, no.4, pp.465-471, 1999.
    [30] Z. X. Gan, J. Q. Han. Construction of Lyapunov function for 2-order ESO. In Proceedings of the 21st Chinese Control Conference, Beijing, China, pp.354-357, 2002. (in Chinese)
    [31] S. A. Snell, D. F. Enns, W. L. Garrard Jr. Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of Guidance, Control, and Dynamics, vol.15, no.4, pp.976-984, 1992.
    [32] Z. Q. Pu, X. M. Tan, G. L. Fan, J. Q. Yi. Design of entry trajectory tracking law for suborbital hypersonic vehicle via inversion control. In Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China, pp.1092-1097, 2012.
    [33] H. K. Khalil. Nonlinear Systems, 3rd ed., Upper Saddle River, New Jersey: Prentice Hall Press, 2001.
    [34] Q. Zheng, L. Q. Gao, Z. Q. Gao. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In Proceedings of the 46th IEEE Conference on Decision and Control, IEEE, New Orleans, LA, USA, pp.3501-3506, 2007.
    [35] W. K. Zhou, S. Shao, Z. Q. Gao. A stability study of the active disturbance rejection control problem by a singular perturbation approach. Applied Mathematical Sciences, vol.3, no.10, pp.491-508, 2009.
    [36] T. Yoshizawa. Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, New York: Springer-Verlag, 1975.
    [37] G. E. H. Reuter. A boundedness theorem for nonlinear differential equations of the second order. Mathematical Proceedings of the Cambridge Philosophical Society, vol.47, no.1, pp.49-54, 1951.
    [38] A. Kroopnick. Properties of solutions to a generalized Liénard equation with forcing term. Applied Mathematics E-Notes, vol.8, pp.40-44, 2008.
  • [1] Satyam Paul, Ajay Arunachalam, Davood Khodadad, Henrik Andreasson, Olena Rubanenko.  Fuzzy tuned PID controller for envisioned agricultural manipulator . International Journal of Automation and Computing, 2021, (): 1-13. doi: 10.1007/s11633-021-1280-5
    [2] Mohammad Al-Fetyani, Mohammad Hayajneh, Adham Alsharkawi.  Design of an Executable ANFIS-based Control System to Improve the Attitude and Altitude Performances of a Quadcopter Drone . International Journal of Automation and Computing, 2021, 18(1): 124-140. doi: 10.1007/s11633-020-1251-2
    [3] Horacio Coral-Enriquez, Santiago Pulido-Guerrero, John Cortés-Romero.  Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes . International Journal of Automation and Computing, 2019, 16(6): 812-827. doi: 10.1007/s11633-019-1179-6
    [4] Basant Kumar Sahu, Bidyadhar Subudhi, Madan Mohan Gupta.  Stability Analysis of an Underactuated Autonomous Underwater Vehicle Using Extended-Routh's Stability Method . International Journal of Automation and Computing, 2018, 15(3): 299-309. doi: 10.1007/s11633-016-0992-4
    [5] Xiao-Yi Wang, Guang-Ren Duan.  A Direct Parametric Approach to Spacecraft Attitude Tracking Control . International Journal of Automation and Computing, 2017, 14(5): 626-636. doi: 10.1007/s11633-017-1089-4
    [6] Huan Du, Guo-Liang Fan, Jian-Qiang Yi.  Nonlinear Longitudinal Attitude Control of an Unmanned Seaplane with Wave Filtering . International Journal of Automation and Computing, 2016, 13(6): 634-642. doi: 10.1007/s11633-016-0962-x
    [7] Imen Manaa, Nabil Barhoumi, Faouzi Msahli.  Global Stability Analysis of Switched Nonlinear Observers . International Journal of Automation and Computing, 2015, 12(4): 432-439. doi: 10.1007/s11633-014-0855-9
    [8] Basant Kumar Sahu, Bidyadhar Subudhi.  Adaptive Tracking Control of an Autonomous Underwater Vehicle . International Journal of Automation and Computing, 2014, 11(3): 299-307. doi: 10.1007/s11633-014-0792-7
    [9] Lal Bahadur Prasad, Barjeev Tyagi, Hari Om Gupta.  Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis Without and With Disturbance Input . International Journal of Automation and Computing, 2014, 11(6): 661-670. doi: 10.1007/s11633-014-0818-1
    [10] Vineet Kumar, A. P. Mittal, R. Singh.  Stability Analysis of Parallel Fuzzy P + Fuzzy I + Fuzzy D Control Systems . International Journal of Automation and Computing, 2013, 10(2): 91-98. doi: 10.1007/s11633-013-0701-5
    [11] State Observer Based Dynamic Fuzzy Logic System for a Class of SISO Nonlinear Systems . International Journal of Automation and Computing, 2013, 10(2): 118-124. doi: 10.1007/s11633-013-0704-2
    [12] Mohammad Mehdi Fateh,  Sara Fateh.  A Precise Robust Fuzzy Control of Robots Using Voltage Control Strategy . International Journal of Automation and Computing, 2013, 10(1): 64-72 . doi: 10.1007/s11633-013-0697-x
    [13] Modeling and Adaptive Sliding Mode Control of the Catastrophic Course of a High-speed Underwater Vehicle . International Journal of Automation and Computing, 2013, 10(3): 210-216. doi: 10.1007/s11633-013-0714-0
    [14] Lei-Po Liu,  Zhu-Mu Fu,  Xiao-Na Song.  Sliding Mode Control with Disturbance Observer for Class of Nonlinear Systems . International Journal of Automation and Computing, 2012, 9(5): 487-491. doi: 10.1007/s11633-012-0671-z
    [15] Feng Zhang,  Guang-Ren Duan.  Integrated Relative Position and Attitude Control of Spacecraft in Proximity Operation Missions . International Journal of Automation and Computing, 2012, 9(4): 342-351. doi: 10.1007/s11633-012-0654-0
    [16] Shao-Cheng Tong,  Ning Sheng.  Adaptive Fuzzy Observer Backstepping Control for a Class of Uncertain Nonlinear Systems with Unknown Time-delay . International Journal of Automation and Computing, 2010, 7(2): 236-246. doi: 10.1007/s11633-010-0236-y
    [17] Adaptive Control of Rigid Body Satellite . International Journal of Automation and Computing, 2008, 5(3): 296-306. doi: 10.1007/s11633-008-0296-4
    [18] Dan Necsulescu, Yi-Wu Jiang, Bumsoo Kim.  Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle . International Journal of Automation and Computing, 2007, 4(1): 71-79. doi: 10.1007/s11633-007-0071-y
    [19] Jiang-Tao Cao, Hong-Hai Liu, Ping Li, David J. Brown, Georgi Dimirovski.  A Study of Electric Vehicle Suspension Control System Based on an Improved Half-vehicle Model . International Journal of Automation and Computing, 2007, 4(3): 236-242. doi: 10.1007/s11633-007-0236-8
    [20] Akira Inoue,  Ming-Cong Deng.  Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System . International Journal of Automation and Computing, 2006, 3(3): 229-234. doi: 10.1007/s11633-006-0229-z
  • 加载中
计量
  • 文章访问数:  4775
  • HTML全文浏览量:  40
  • PDF下载量:  2084
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-30
  • 修回日期:  2013-07-01
  • 刊出日期:  2014-02-20

An Integrated Approach to Hypersonic Entry Attitude Control

doi: 10.1007/s11633-014-0764-y
    基金项目:

    This work was supported by National Natural Science Foundation of China (Nos.61273149, 61203003) and the Special Project for Innovation Methods of MOST (Nos.2012IM010200 and B1320133020).

摘要: This paper presents an integrated approach based on dynamic inversion (DI) and active disturbance rejection control (ADRC) to the entry attitude control of a generic hypersonic vehicle (GHV). DI is firstly used to cancel the nonlinearities of the GHV entry model to construct a basic attitude controller. To enhance the control performance and system robustness to inevitable disturbances, ADRC techniques, including the arranged transient process (ATP), nonlinear feedback (NF), and most importantly the extended state observer (ESO), are integrated with the basic DI controller. As one primary task, the stability and estimation error of the second-order nonlinear ESO are analyzed from a brand new perspective: the nonlinear ESO is treated as a specific form of forced Linard system. Abundant qualitative properties of the Linard system are utilized to yield comprehensive theorems on nonlinear ESO solution behaviors, such as the boundedness, convergence, and existence of periodic solutions. Phase portraits of ESO estimation error dynamics are given to validate our analysis. At last, three groups of simulations, including comparative simulations with modeling errors, Monte Carlo runs with parametric uncertainties, and a six degrees-of-freedom reference entry trajectory tracking are executed, which demonstrate the superiority of the proposed integrated controller over the basic DI controller.

English Abstract

Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan, Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(1): 39-50. doi: 10.1007/s11633-014-0764-y
引用本文: Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan, Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2014, 11(1): 39-50. doi: 10.1007/s11633-014-0764-y
Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan and Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control. International Journal of Automation and Computing, vol. 11, no. 1, pp. 39-50, 2014 doi:  10.1007/s11633-014-0764-y
Citation: Zhi-Qiang Pu, Ru-Yi Yuan, Xiang-Min Tan and Jian-Qiang Yi. An Integrated Approach to Hypersonic Entry Attitude Control. International Journal of Automation and Computing, vol. 11, no. 1, pp. 39-50, 2014 doi:  10.1007/s11633-014-0764-y
参考文献 (38)

目录

    /

    返回文章
    返回