Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure

Jun Wang Hai-Long Pei Nai-Zhou Wang

Jun Wang, Hai-Long Pei, Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2013, 10(5): 463-471. doi: 10.1007/s11633-013-0743-8
引用本文: Jun Wang, Hai-Long Pei, Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2013, 10(5): 463-471. doi: 10.1007/s11633-013-0743-8
Jun Wang, Hai-Long Pei and Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure. International Journal of Automation and Computing, vol. 10, no. 5, pp. 463-471, 2013 doi:  10.1007/s11633-013-0743-8
Citation: Jun Wang, Hai-Long Pei and Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure. International Journal of Automation and Computing, vol. 10, no. 5, pp. 463-471, 2013 doi:  10.1007/s11633-013-0743-8

Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure

doi: 10.1007/s11633-013-0743-8
基金项目: 

This work was supported by National Natural Science Foundation of China (No.61174053) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100172110023).

Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure

Funds: 

This work was supported by National Natural Science Foundation of China (No.61174053) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100172110023).

More Information
    Author Bio:

    Jun Wang received his B.Sc. and M.Sc. degrees form Zhengzhou University of Light Industry, China in 2007 and 2010, respectively. He is currently a Ph.D. candidate at College of Automation Science and Engineering, South China University of Technology, China. His research interests include robust fault-tolerant control and optimal control algorithm. E-mail: jwangsunny@gmail.com

    Corresponding author: Hai-Long Pei
  • 摘要: The problem of linear systems subject to actuator faults (outage, loss of effectiveness and stuck), parameter uncertainties and external disturbances is considered. An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties, disturbances and the occurrence of actuator faults are account for. The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability. According to the information from the adaptive mechanism, the updating control law is derived such that all the parameters of the unknown input signal are bounded. Furthermore, a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented. The advantage of fault compensation is that the dynamics caused by faults can be accommodated online. The proposed design method is illustrated on a rocket fairing structural-acoustic model.
  • [1] Y. M. Zhang, J. Jiang. Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control, vol.32, no.2, pp.229-252, 2008.
    [2] Q. Zhao, J. Jiang. Reliable state feedback control system design against actuator failures. Automatica, vol.34, no.10, pp.1267-1272, 2006.
    [3] R. J. Veillette. Reliable linear-quadratic state-feedback control. Automatica, vol.31, no.1, pp.137-143, 1995.
    [4] M. J. Khosrowjerdi, R. Nikoukhah, N. Safari-Shad. A mixed H2/H approach to simultaneous fault detection and control. Automatica, vol.40, no.2, pp.261-267, 2004.
    [5] Z. C. Wang, Y. T. Wen, X. Y. Luo. Quantized H fault-tolerant control for networked control systems. International Journal of Automation and Computing, vol.9, no.4, pp.352-357, 2012.
    [6] Y. M. Zhang, J. Jiang. Active fault tolerant control system against partial actuator failures. IEEE Proceedings-Control Theory and Applications, vol.149, no.1, pp.95-104, 2002.
    [7] M. Wang, D. H. Zhou. Fault tolerant control of feedback linearizable systems with stuck actuators. Asian Journal of Control, vol.10, no.1, pp.74-87, 2008.
    [8] G. J. Liu, Y. C. Li, D. J. Wang. Active fault tolerant control with actuation reconfiguration. IEEE Transactions on Aerospace and Electronic Systems, vol.40, no.3, pp.1110-1117, 2004.
    [9] S. Y. Cao, L. Guo, X. Y. Wen. Fault tolerant control with disturbance rejection and attenuation performance for systems with multiple disturbances. Asian Journal of Control, vol.13, no.6, pp.1056-1064, 2011.
    [10] O. Härkegard, S. T. Glad. Resolving actuator redundancy-optimal control vs. control allocation. Automatica, vol.41, no.1, pp.137-144, 2005.
    [11] H. Alwi, C. Edwards. Fault tolerant control using sliding modes with on-line control allocation. Automatica, vol.44, no.7, pp.1859-1866, 2008.
    [12] J. D. Boskovic, R. K. Mehra. Control allocation in overactuated aircraft under position and rate limiting. In Proceedings of the American Control Conference, IEEE, Anchorage, AK, USA, pp.791-796, 2002.
    [13] C. Edwards, S. K. Spurgeon, R. J. Patton. Sliding mode observers for fault detection and isolation. Automatica, vol.36, no.4, pp.541-553, 2000.
    [14] C. P. Tan, F. Crusca, M. Aldeen. Extended results on robust state estimation and fault detection. Automatica, vol.44, no.8, pp.2027-2033, 2008.
    [15] X. L. Wu, X. J. Wu, X. Y. Luo, Q. M. Zhu. Design of observer-based adaptive controller for nonlinear systems with unmodeled dynamics and actuator dead-zone. International Journal of Automation and Computing, vol.8, no.2, pp.201-208, 2011.
    [16] D. Ye, G. H. Yang. Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Transactions on Control Systems Technology, vol.14, no.6, pp.1088-1096, 2006.
    [17] G. H. Yang, D. Ye. Reliable H control of linear systems with adaptive mechanism. IEEE Transactions on Automatic Control, vol.55, no.1, pp.242-247, 2010.
    [18] Z. Q. Zuo, D. W. C. Ho, Y. J. Wang. Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica, vol.46, no.3, pp.569-576, 2010.
    [19] X. D. Tang, G. Tao, L. F. Wang, J. A. Stankovic. Robust and adaptive actuator failure compensation designs for a rocket fairing structural-acoustic model. IEEE Transactions on Aerospace and Electronic Systems, vol.40, no.4, pp.1359-1366, 2004.
    [20] G. Tao, S. M. Joshi, X. L. Ma. Adaptive state feedback and tracking control of systems with actuator failures. IEEE Transactions on Automatic Control, vol.46, no.1, pp.78-95, 2001.
    [21] W. Wang, C. Y. Wen. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica, vol.46, no.12, pp.2082-2091, 2010.
    [22] X. Z. Jin, G. H. Yang. Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances. Acta Automatica Sinica, vol.35, no.3, pp.305-309, 2009.
    [23] J. D. Boskovic, R. K. Mehra. A decentralized fault-tolerant control system for accommodation of failures in higher-order flight control actuators. IEEE Transactions on Control Systems Technology, vol.18, no.5, pp.1103-1115, 2010.
    [24] J. Li, G. Y. Tang, P. Zhang, J. Zou. Observer-based fault diagnosis and self-restore control for systems with measurement delays. Asian Journal of Control, vol.14, no.6, pp.1717-1723, 2012.
    [25] J. Li, G. Y. Tang, P. Zhang, D. R. Huang. Fault diagnosis and optimal fault-tolerant control for systems with delayed measurements and states. International Journal of Control, Automation, and Systems, vol.10, no.1, pp.150-157, 2012.
    [26] K. Zhang, B. Jiang, P. Shi. Fast fault estimation and accommodation for dynamical systems. IET Control Theory and Application, vol.3, no.2, pp.189-199, 2009.
    [27] W. Chen, M. Saif. Adaptive actuator fault detection, isolation and accommodation in uncertain systems. International Journal of Control, vol.80, no.1, pp.45-63, 2007.
    [28] H. Wang, S. Daley. Actuator fault diagnosis: An adaptive observer-based technique. IEEE Transactions on Automatic Control, vol.41, no.7, pp.1073-1078, 1996.
    [29] R. J. Patton, S. Klinkhieo. Actuator fault estimation and compensation based on an augmented state observer approach. In Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, IEEE, Shanghai, China, pp.8482-8487, 2009.
    [30] Z. Gao, S. X. Ding. Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral and derivative observer design. IET Control Theory and Applicationa, vol.1, no.5, pp.1208-1218, 2007.
    [31] M. Corless, J. Tu. State and input estimation for a class of uncertain systems. Automatica, vol.34, no.6, pp.757-764, 1998.
    [32] J. D. Boskovic, R. K. Mehra. Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. In Proceedings of the American Control Conference, IEEE, San Diego, CA, USA, pp.1920-1924, 1999.
    [33] J. J. Slotine, W. P. Li. Applied Nonlinear Control, New Jersey, USA: Prentice Hall, pp.122-123, 1991.
    [34] H. S. Wu. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Transactions on Automatic Control, vol.49, no.4, pp.611-616, 2004.
    [35] U. Maeder, F. Borrelli, M. Morari. Linear offset-free model predictive control. Automatica, vol.45, no.10, pp.2214-2222, 2009.
    [36] H. K. Khalil. Nonlinear System, New Jersey, USA: Prentice Hall, pp.156-174, 2002.
    [37] P. Gahinet, P. Apkarian. A linear matrix inequality approach to H control. International Journal of Robust and Nonlinear Control, vol.4, no.4, pp.421-448, 1994.
    [38] T. Iwasaki, R. E. Skelton. All controllers for the general H control problem: LMI existence conditions and state space formulas. Automatica, vol.30, no.8, pp.1307-1317, 1994.
  • [1] Erphan A. Bhuiyan, Md. Maeenul Azad Akhand, Sajal K. Das, Md. F. Ali, Z. Tasneem, Md. R. Islam, D. K. Saha, Faisal R. Badal, Md. H. Ahamed, S. I. Moyeen.  A Survey on Fault Diagnosis and Fault Tolerant Methodologies for Permanent Magnet Synchronous Machines . International Journal of Automation and Computing, 2020, 17(6): 763-787. doi: 10.1007/s11633-020-1250-3
    [2] Ann Smith, Fengshou Gu, Andrew D. Ball.  An Approach to Reducing Input Parameter Volume for Fault Classifiers . International Journal of Automation and Computing, 2019, 16(2): 199-212. doi: 10.1007/s11633-018-1162-7
    [3] Mehdi Naderi, Tor Arne Johansen, Ali Khaki Sedigh.  A Fault Tolerant Control Scheme Using the Feasible Constrained Control Allocation Strategy . International Journal of Automation and Computing, 2019, 16(5): 628-643. doi: 10.1007/s11633-019-1168-9
    [4] Adel Tellili, Nouceyba Abdelkrim, Amina Challouf, Mohamed Naceur Abdelkrim.  Adaptive Fault Tolerant Control of Multi-time-scale Singularly Perturbed Systems . International Journal of Automation and Computing, 2018, 15(6): 736-746. doi: 10.1007/s11633-016-0971-9
    [5] Sulaiman Ayobami Lawal, Jie Zhang.  Actuator Fault Monitoring and Fault Tolerant Control in Distillation Columns . International Journal of Automation and Computing, 2017, 14(1): 80-92. doi: 10.1007/s11633-016-1037-8
    [6] Mahnaz Hashemi, Javad Askari, Jafar Ghaisari, Marzieh Kamali.  Robust Adaptive Actuator Failure Compensation for a Class of Uncertain Nonlinear Systems . International Journal of Automation and Computing, 2017, 14(6): 719-728. doi: 10.1007/s11633-016-1016-0
    [7] Guo-Jin Feng, James Gu, Dong Zhen, Mustafa Aliwan, Feng-Shou Gu, Andrew D. Ball.  Implementation of Envelope Analysis on a Wireless Condition Monitoring System for Bearing Fault Diagnosis . International Journal of Automation and Computing, 2015, 12(1): 14-24. doi: 10.1007/s11633-014-0862-x
    [8] Jian Ding, Blazej Cichy, Krzysztof Galkowski, Eric Rogers, Hui-Zhong Yang.  Robust Fault-tolerant Iterative Learning Control for Discrete Systems via Linear Repetitive Processes Theory . International Journal of Automation and Computing, 2015, 12(3): 254-265. doi: 10.1007/s11633-015-0883-0
    [9] Qing-Yu Su, Yan-Cheng Li, Xing-Ze Dai, Jian Li.  Fault Detection for a Class of Impulsive Switched Systems . International Journal of Automation and Computing, 2014, 11(2): 223-230. doi: 10.1007/s11633-014-0784-7
    [10] Alessandro di Gaeta, Umberto Montanaro.  Application of a Robust Model Reference Adaptive Control Algorithm to a Nonlinear Automotive Actuator . International Journal of Automation and Computing, 2014, 11(4): 377-391. doi: 10.1007/s11633-014-0803-8
    [11] Zhen-Chun Wang, Yin-Tang Wen, Xiao-Yuan Luo.  Quantized H Fault-tolerant Control for Networked Control Systems . International Journal of Automation and Computing, 2012, 9(4): 352-357. doi: 10.1007/s11633-012-0655-z
    [12] Ming-Yue Zhao, He-Ping Liu, Zhi-Jun Li, De-Hui Sun.  Fault Tolerant Control for Networked Control Systems with Packet Loss and Time Delay . International Journal of Automation and Computing, 2011, 8(2): 244-253. doi: 10.1007/s11633-011-0579-z
    [13] Mohamed Boukattaya, Tarak Damak, Mohamed Jallouli.  Robust Adaptive Control for Mobile Manipulators . International Journal of Automation and Computing, 2011, 8(1): 8-13. doi: 10.1007/s11633-010-0548-y
    [14] Xiao-Yuan Luo, Mei-Jie Shang, Cai-Lian Chen, Xin-Ping Guan.  Guaranteed Cost Active Fault-tolerant Control of Networked Control System with Packet Dropout and Transmission Delay . International Journal of Automation and Computing, 2010, 7(4): 509-515. doi: 10.1007/s11633-010-0534-4
    [15] Marek Kowal,  Józef Korbicz.  Fault Detection under Fuzzy Model Uncertainty . International Journal of Automation and Computing, 2007, 4(2): 117-124. doi: 10.1007/s11633-007-0117-1
    [16] Bibhrajit Halder,  Nilanjan Sarkar.  Robust Nonlinear Analytic Redundancy for Fault Detection and Isolation in Mobile Robot . International Journal of Automation and Computing, 2007, 4(2): 177-182. doi: 10.1007/s11633-007-0177-2
    [17] Mohamed-Faouzi Harkat,  Salah Djelel,  Noureddine Doghmane,  Mohamed Benouaret.  Sensor Fault Detection, Isolation and Reconstruction Using Nonlinear Principal Component Analysis . International Journal of Automation and Computing, 2007, 4(2): 149-155. doi: 10.1007/s11633-007-0149-6
    [18] Pedro Antão, C. Guedes Soares.  Fault-tree Models of Accident Scenarios of RoPax Vessels . International Journal of Automation and Computing, 2006, 3(2): 107-116. doi: 10.1007/s11633-006-0107-8
    [19] Min-Ze Chen,  Qi Zhao,  Dong-Hua Zhou.  A Robust Fault Detection Approach for Nonlinear Systems . International Journal of Automation and Computing, 2006, 3(1): 23-28. doi: 10.1007/s11633-006-0023-y
    [20] You-Qing Wang, Dong-Hua Zhou, Li-Heng Liu.  Robust and Active Fault-tolerant Control for a Class of Nonlinear Uncertain Systems . International Journal of Automation and Computing, 2006, 3(3): 309-313. doi: 10.1007/s11633-006-0309-0
  • 加载中
计量
  • 文章访问数:  5460
  • HTML全文浏览量:  46
  • PDF下载量:  3442
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-16
  • 修回日期:  2013-03-01
  • 刊出日期:  2013-10-20

Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure

doi: 10.1007/s11633-013-0743-8
    基金项目:

    This work was supported by National Natural Science Foundation of China (No.61174053) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20100172110023).

    作者简介:

    Jun Wang received his B.Sc. and M.Sc. degrees form Zhengzhou University of Light Industry, China in 2007 and 2010, respectively. He is currently a Ph.D. candidate at College of Automation Science and Engineering, South China University of Technology, China. His research interests include robust fault-tolerant control and optimal control algorithm. E-mail: jwangsunny@gmail.com

摘要: The problem of linear systems subject to actuator faults (outage, loss of effectiveness and stuck), parameter uncertainties and external disturbances is considered. An active fault compensation control law is designed which utilizes compensation in such a way that uncertainties, disturbances and the occurrence of actuator faults are account for. The main idea is designing a robust adaptive output feedback controller by automatically compensating the fault dynamics to render the close-loop stability. According to the information from the adaptive mechanism, the updating control law is derived such that all the parameters of the unknown input signal are bounded. Furthermore, a disturbance decoupled fault reconstruction scheme is presented to evaluate the severity of the fault and to indicate how fault accommodation should be implemented. The advantage of fault compensation is that the dynamics caused by faults can be accommodated online. The proposed design method is illustrated on a rocket fairing structural-acoustic model.

English Abstract

Jun Wang, Hai-Long Pei, Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2013, 10(5): 463-471. doi: 10.1007/s11633-013-0743-8
引用本文: Jun Wang, Hai-Long Pei, Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2013, 10(5): 463-471. doi: 10.1007/s11633-013-0743-8
Jun Wang, Hai-Long Pei and Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure. International Journal of Automation and Computing, vol. 10, no. 5, pp. 463-471, 2013 doi:  10.1007/s11633-013-0743-8
Citation: Jun Wang, Hai-Long Pei and Nai-Zhou Wang. Adaptive Output Feedback Control Using Fault Compensation and Fault Estimation for Linear System with Actuator Failure. International Journal of Automation and Computing, vol. 10, no. 5, pp. 463-471, 2013 doi:  10.1007/s11633-013-0743-8
参考文献 (38)

目录

    /

    返回文章
    返回