[1]
|
W. Lin. http://nonlinear.cwru.edu/ linwei/, 2010. |
[2]
|
C. J. Qian. Global Synthesis of Nonlinear Systems WithUncontrollable Linearization. Ph.D. Dissertation, 2001. |
[3]
|
H. Lei. Universal Output Feedback Control of NonlinearSystems. Ph.D. Dissertation, 2008. |
[4]
|
W. Lin, C. J. Qian. Adding one power integrator: A tool forglobal stabilization of high-order lower-triangular systems.Systems and Control Letters, vol. 39, no. 5, pp. 339–351,2000. |
[5]
|
W. Lin, C. J. Qian. Adaptive regulation of high-order cas-cade nonlinear systems: An adding a power integrator tech-nique. Systems and Control Letters, vol. 39, no. 5, pp. 353–364, 2000. |
[6]
|
B. Yang, W. Lin. Robust output feedback stabilization ofuncertain nonlinear systems with uncontrollable and un-observable linearization. IEEE Transactions on AutomaticControl, vol. 50, no. 7, pp. 619–630, 2005. |
[7]
|
N. Duan, F. N. Hu, X. Yu. An improved control algorithmfor a class of high-order nonlinear systems with unmodelleddynamics. International Journal of Automation and Computing, vol. 6, no. 3, pp. 234–239, 2009. |
[8]
|
J. Polendo, C. J. Qian. A generalized framework for globaloutput feedback stabilization of genuinely nonlinear system-s. Proceedings of the 44th IEEE Conference on Decision andControl, and European Control Conference, Seville, Spain,pp. 2646–2651, 2005. |
[9]
|
C. J. Qian. A homogeneous domination approach for globaloutput feedback stabilization of a class of nonlinear system-s. Proceedings of the 2005 American Control Conference,Portland, OR, USA, pp. 4708–4715, 2005. |
[10]
|
J. Polendo, C. J. Qian. A generalized homogeneous domi-nation approach for global stabilization of inherently non-linear systems via output feedback. International Journal ofRobust and Nonlinear Control, vol. 17, no. 7, pp. 605–629,2007. |
[11]
|
V. Andrieu, L. Praly, A. Astolfi. Nonlinear output feedbackdesign via domination and generalized weighted homogene-ity. Proceedings of the 45th IEEE Conference on Decisionand Control, pp. 6391–6396, 2006. |
[12]
|
J. Kurzweil. On the inversion of Lyapunov’s Second The-orem on the stability of motion. American MathematicalSociety Translations, Ser 2, vol. 24, pp. 19–77, 1956. |
[13]
|
C. J. Qian,W. Lin. A continuous feedback approach to glob-al strong stabilization of nonlinear systems. IEEE Transactionson Automatic Control, vol. 46, no. 7, pp. 1061–1079,2001. |
[14]
|
C. J. Qian,W. Lin. Recursive observer design, homogeneousapproximation, and nonsmooth output feedback stabiliza-tion of nonlinear systems. IEEE Transactions on AutomaticControl, vol. 51, no. 9, pp. 1457–1471, 2006. |
[15]
|
J. Polendo, C. J. Qian, H. Lei, W. Lin. A dual observ-er method for the global stabilization of nonlinear systemswith limited and uncertain information. Proceedings of the2007 American Control Conference, New York, USA, pp.5354–5359, 2007. |
[16]
|
H. Lei, W. Lin. Robust control of uncertain systems withpolynomial nonlinearity by output feedback. InternationalJournal of Robust and Nonlinear Control, vol. 19, no. 6, pp.692–723, 2009. |
[17]
|
H. Lei, W. Lin. Reduced-order observer, homogeneous dom-ination and nonsmooth output feedback stabilization ofnonlinear systems. Proceedings of the 2008 World congresson Intelligent Control and Automation, Chongqing, China,pp. 394–399, 2008. |
[18]
|
X. J. Xie, J. Tian. State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inversedynamics. International Journal of Robust and NonlinearControl, vol. 17, no. 14, pp. 1343–1362, 2007. |
[19]
|
J. Tian, X.J. Xie. Adaptive state-feedback stabilizationfor high-order stochastic non-linear systems with uncertaincontrol coefficients. International Journal of Control, vol.80, no. 9, pp. 1503-1516, 2007. |
[20]
|
Z. J. Wu, X. J. Xie, S. Y. Zhang. Adaptive backsteppingcontroller design using stochastic small-gain theorem. Automatica, vol. 43, no. 4, pp. 608–620, 2007. |
[21]
|
W. Q. Li, X. J. Xie. Inverse optimal stabilization for s-tochastic nonlinear systems whose linearizations are notstabilizable. Automatica, vol. 45, no. 2, pp. 498–503, 2009. |
[22]
|
Z. J. Wu, X. J. Xie, P. Shi, Y. Q. Xia. Backstepping con-troller design for a class of stochastic nonlinear systems withMarkovian switching. Automatica, vol. 45, no. 4, pp. 997-1004, 2009. |
[23]
|
X. J. Xie, J. Tian. Adaptive state-feedback stabilization ofhigh-order stochastic systems with nonlinear parameteriza-tion. Automatica, vol. 45, no. 1, pp. 126–133, 2009. |
[24]
|
X. J. Xie, W. Q. Li. Output-feedback control of a class ofhigh-order stochastic nonlinear systems. International Journalof Control, vol. 82, no. 9, pp. 1692–1705, 2009. |
[25]
|
L. Liu, X. J. Xie. Decentralized adaptive stabilization for in-terconnected systems with dynamic input-output and non-linear interactions. Automatica, vol. 46, no. 6, pp. 1060-1067, 2010. |
[26]
|
X. J. Xie, N. Duan. Output tracking of high-order stochasticnonlinear systems with application to benchmark mechani-cal system. IEEE Transactions on Automatic Control, vol.55, no. 5, pp. 1197–1202, 2010. |
[27]
|
X. Yu, X. J. Xie, N. Duan. Small-gain control method forstochastic nonlinear systems with stochastic iISS inversedynamics. Automatica, vol. 46, no. 11, pp. 1790-1798, 2010. |
[28]
|
X. J. Xie, N. Duan, X. Yu. State-feedback control of high-order stochastic nonlinear systems with SiISS inverse dy-namics. IEEE Transactions on Automatic Control, vol. 56,no. 8, pp. 1921–1926, 2011. |
[29]
|
N. Duan, X. J. Xie. Further results on output-feedback sta-bilization for a class of stochastic nonlinear systems. IEEETransactions on Automatic Control, vol. 56, no. 5, pp.1208–1213, 2011. |
[30]
|
N. Duan, X. J. Xie, X. Yu. State feedback stabilization ofstochastic nonlinear systems with SiISS inverse dynamics.International Journal of Robust and Nonlinear Control, vol.21, no. 16, pp. 1903-1919, 2011. |
[31]
|
N. Duan, X. Yu, X. J. Xie. Output feedback control usingsmall-gain conditions for stochastic nonlinear systems withSiISS inverse dynamics. International Journal of Control,vol. 84, no. 1, pp. 47-56, 2011. |
[32]
|
L. Liu, X. J. Xie. Output-feedback stabilization for stochas-tic high-order nonlinear systems with time-varying delay.Automatica, vol. 47, no. 12, pp. 2772–2779, 2011. |
[33]
|
W. Q. Li, X. J. Xie, S. Y. Zhang. Output-feedback sta-bilization of stochastic high-order nonlinear systems underweaker conditions. SIAM Journal on Control and Optimization, vol. 49, no. 3, pp. 1262–1282, 2011. |
[34]
|
L. Liu, X. J. Xie. State-feedback stabilization for stochastichigh-order nonlinear systems with SISS inverse dynamics.Asian Journal of Control, vol. 14, no. 4, pp. 1-11, 2012. |
[35]
|
X. J. Xie, L. Liu. Further result on output feedback sta-bilization for stochastic high-order nonlinear systems withtime-varying delay. Automatica, vol. 48, no. 9, pp. 2577–2586, 2012. |
[36]
|
C. R. Zhao, X. J. Xie. Output feedback stabilization us-ing small-gain method and reduced-order observer for s-tochastic nonlinear systems. IEEE Transactions on AutomaticControl, vol. 58, no. 2, pp. 523-528, 2013. |
[37]
|
X. J. Xie, L. Liu. A homogeneous domination approach toa class of stochastic time-varying delay nonlinear systems.IEEE Transactions on Automatic Control, vol. 58, no. 2,pp. 494-499, 2013. |