A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact

Arthur Anyakwo, Crinela Pislaru, Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact[J]. 国际自动化与计算杂志（英）/International Journal of Automation and Computing, 2012, 9(3): 237-247. doi: 10.1007/s11633-012-0640-6
 引用本文: Arthur Anyakwo, Crinela Pislaru, Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact[J]. 国际自动化与计算杂志（英）/International Journal of Automation and Computing, 2012, 9(3): 237-247.
Arthur Anyakwo, Crinela Pislaru and Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact. International Journal of Automation and Computing, vol. 9, no. 3, pp. 237-247, 2012 doi:  10.1007/s11633-012-0640-6
 Citation: Arthur Anyakwo, Crinela Pislaru and Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact. International Journal of Automation and Computing, vol. 9, no. 3, pp. 237-247, 2012

## A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact

• 摘要: This paper presents a new method for modelling and simulation of the dynamic behaviour of the wheel-rail contact. The proposed dynamic wheel-rail contact model comprises wheel-rail contact geometry, normal contact problem, tangential contact problem and wheelset dynamic behaviour on the track. This two-degree of freedom model takes into account the lateral displacement of the wheelset and the yaw angle. Single wheel tread rail contact is considered for all simulations and Kalker's linear theory and heuristic non-linear creep models are employed. The second order differential equations are reduced to first order and the forward velocity of the wheelset is increased until the wheelset critical velocity is reached. This approach does not require solving mathematical equations in order to estimate the critical velocity of the dynamic wheel-rail contact model. The mathematical model is implemented in Matlab using numerical differentiation method. The simulated results compare well with the estimated results based on classical theory related to the dynamic behaviour of rail-wheel contact so the model is validated.
•  [1] W. Yan, F. D. Fischer. Applicability of the Hertz contact theory to rail-wheel contact problems. Archive of Applied Mechanics, vol.70, no.4, pp.255--268, 1999. [2] J. B. Ayasse, H. Chollet. Determination of the wheel rail contact patch in semi-Hertzian conditions. Vehicle System Dynamics, vol.43, no.3, pp.161--172, 2005. [3] X. Quost, M. Sebes, A. Eddhahak, J. B. Ayasse, H. Chollet, P. E. Gautier, F. Thouverez. Assessment of a semi-Hertzian method for the determination of the wheel-rail contact patch. Vehicle System Dynamics, vol.44, no.10, pp.789--814, 2006. [4] B. Jacobson, J. J. Kalker. Rolling Contact Phenomena, CISM Courses and Lectures, Springer, no.411, pp.1--87, 2000. [5] T. Telliskivi, U. Olofsson. Contact mechanics analysis of measured wheel-rail profiles using the finite element method. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol.215, no.2, pp.65--72, 2000. [6] J. J. Kalker. Wheel-rail rolling contact theory. Wear, vol.144, no.1--2, pp.243--261, 1991. [7] J. J. Kalker. Three Dimensional Elastic Bodies in Rolling Contact, 2nd ed., Berlin, Germany: Springer, 1990. [8] S. Iwnicki. Simulation of wheel-rail contact forces. Fatigue & Fracture of Engineering Materials and Structures, vol.26, no.10, pp.887--900, 2003, [9] J. Pombo, J. Ambrosio, M. Silva. A new wheel-rail contact model for railway dynamics. Vehicle System Dynamics, vol.45, no.2, pp.165--189, 2007. [10] A. H. Wickens. The dynamics of railway vehicles on straight track: Fundamental considerations for lateral stability. Proceedings of the Institution of Mechanical Engineers, vol.180, no.6, pp.29--44, 1965. [11] S. Y. Lee, Y. C. Cheng. A new dynamic model of high speed railway vehicle moving on curved tracks. Journal of Vibration and Acoustics, vol.130, no.1, 011009, 2008. [12] Rail Safety and Standards Board (RSSB). Feasibility of Reducing the Number of Standard Wheel Profile Designs, Research and Development Programme, Report Commentary, 2002. [13] British Standards (BSI), Specification for Railway Rails, pp.37, 2004. [14] E. B. Magrab, S. Azarm, B. Balachandran, J. Duncan, K. Herold, G. Walsh. An Engineers Guide to Matlab, 1st ed., New Jersey, USA: Prentice Hall, 2000. [15] R. L. Burden, J. D. Faires. Numerical Analysis, 8th ed., California, USA: Thompson Brooks/Cole, 2005. [16] A. Jaschinski, H. Chollet, S. D. Iwnicki, A. H. Wickens, J. V. W黵zen. The application of roller rigs to railway vehicle dynamics. Vehicle System Dynamics, vol.31, no.5--6, pp.345--392, 1999. [17] M. I. A. Lourakis. A Brief Description of the Levenberg-Marquardt Algorithm Implemented by levmar, [Online], Available: http://browse-code.mrpt.org/mrpt-0.9.0/ doc/papers/levmar.pdf, March 10, 2012. [18] MATLAB Documentation, Mathsworks. [Online], Available: http://www.mathworks.com/help/toolbox/optim/ ug/fsolve.html, March 10, 2012. [19] A. Anyakwo, C. Pislaru, A. Ball, F. Gu. A novel approach to modelling and simulation of the dynamic behaviour of the wheel-rail interface. In Proceedings of the 17th IEEE Conference on Automation and Computing, IEEE, Huddersfield, UK, pp.283--288, 2011.
•  [1] Anis Khouaja, Hassani Messaoud.  Iterative Selection of GOB Poles in the Context of System Modeling . International Journal of Automation and Computing, 2019, 16(1): 102-111. doi: 10.1007/s11633-016-0984-4 [2] J. Gimenez, A. Amicarelli, J. M. Toibero, F. di Sciascio, R. Carelli.  Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context . International Journal of Automation and Computing, 2018, 15(3): 310-324. doi: 10.1007/s11633-017-1109-4 [3] Alessandro Mariani, Kary Thanapalan, Peter Stevenson, Jonathan Williams.  An Advanced Prediction Mechanism to Analyse Pore Geometry Shapes and Identification of Blocking Effect in VRLA Battery System . International Journal of Automation and Computing, 2017, 14(1): 21-32. doi: 10.1007/s11633-016-1040-0 [4] Guo-Jin Feng, James Gu, Dong Zhen, Mustafa Aliwan, Feng-Shou Gu, Andrew D. Ball.  Implementation of Envelope Analysis on a Wireless Condition Monitoring System for Bearing Fault Diagnosis . International Journal of Automation and Computing, 2015, 12(1): 14-24. doi: 10.1007/s11633-014-0862-x [5] Kayode Owa, Sanjay Sharma, Robert Sutton.  A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable Coupled Tank System . International Journal of Automation and Computing, 2015, 12(2): 156-170. doi: 10.1007/s11633-014-0825-2 [6] Philip Cross, Xiandong Ma.  Model-based and Fuzzy Logic Approaches to Condition Monitoring of Operational Wind Turbines . International Journal of Automation and Computing, 2015, 12(1): 25-34. doi: 10.1007/s11633-014-0863-9 [7] Jiri Vojtesek, Petr Dostal.  Optimal Choice of Weighting Factors in Adaptive Linear Quadratic Control . International Journal of Automation and Computing, 2014, 11(3): 241-248. doi: 10.1007/s11633-014-0786-5 [8] Jie Chen, Cun-Bao Ma, Dong Song.  Kinetic Characteristics Analysis of Aircraft During Heavy Cargo Airdrop . International Journal of Automation and Computing, 2014, 11(3): 313-319. doi: 10.1007/s11633-014-0794-5 [9] Roland E. Best, Nikolay V. Kuznetsov, Gennady A. Leonov, Marat V. Yuldashev, Renat V. Yuldashev.  Simulation of Analog Costas Loop Circuits . International Journal of Automation and Computing, 2014, 11(6): 571-579. doi: 10.1007/s11633-014-0846-x [10] František Gazdoš.  Introducing a New Tool for Studying Unstable Systems . International Journal of Automation and Computing, 2014, 11(6): 580-587. doi: 10.1007/s11633-014-0844-z [11] Kathryn Stockwell,  Sarah Dunnett.  Application of a Reliability Model Generator to a Pressure Tank System . International Journal of Automation and Computing, 2013, 10(1): 9-17 . doi: 10.1007/s11633-013-0691-3 [12] Quan Liang, Yuan-Zhuo Wang, Yong-Hui Zhang.  Resource Virtualization Model Using Hybrid-graph Representation and Converging Algorithm for Cloud Computing . International Journal of Automation and Computing, 2013, 10(6): 597-606. doi: 10.1007/s11633-013-0758-1 [13] B. Srinivasa Prasad,  D. Siva Prasad,  A. Sandeep,  G. Veeraiah.  Condition Monitoring of CNC Machining Using Adaptive Control . International Journal of Automation and Computing, 2013, 10(3): 202-209. doi: 10.1007/s11633-013-0713-1 [14] Xin-Min Xu, Yao Chen, Wen-Yao Xu, Fang Gong.  An Efficient Algorithm for Mobile Localization in Sensor Networks . International Journal of Automation and Computing, 2012, 9(6): 594-599 . doi: 10.1007/s11633-012-0684-7 [15] He Ma, Hong-Ming Xu, Ji-Hong Wang.  Real-time Control Oriented HCCI Engine Cycle-to-cycle Dynamic Modelling . International Journal of Automation and Computing, 2011, 8(3): 317-325. doi: 10.1007/s11633-011-0587-z [16] Bin-Rui Wang, Ying-Lian Jin, Dong Wei.  Modeling of Pneumatic Muscle with Shape Memory Alloy and Braided Sleeve . International Journal of Automation and Computing, 2010, 7(3): 283-288. doi: 10.1007/s11633-010-0504-x [17] Li He, Zheng-Hao Wang, Ke-Long Zhang.  Production Management Modelling Based on MAS . International Journal of Automation and Computing, 2010, 7(3): 336-341. doi: 10.1007/s11633-010-0512-x [18] Yang Liu,  Mohammad Shahidul Hasan,  Hong-Nian Yu.  Modelling and Remote Control of an Excavator . International Journal of Automation and Computing, 2010, 7(3): 349-358. doi: 10.1007/s11633-010-0514-8 [19] Xiao-Fen Wang, Ying-Rui Liu, Wen-Sheng Zhang.  Research on Modelling Digital Paper-cut Preservation . International Journal of Automation and Computing, 2009, 6(4): 356-363. doi: 10.1007/s11633-009-0356-4 [20] KKB Hon, BT Hang Tuah Baharudin.  The Impact of High Speed Machining on Computing and Automation . International Journal of Automation and Computing, 2006, 3(1): 63-68. doi: 10.1007/s11633-006-0063-3

##### 计量
• 文章访问数:  8288
• HTML全文浏览量:  64
• PDF下载量:  9661
• 被引次数: 0
##### 出版历程
• 收稿日期:  2011-06-02
• 修回日期:  2011-09-18
• 刊出日期:  2012-06-20

## A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact

### English Abstract

Arthur Anyakwo, Crinela Pislaru, Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact[J]. 国际自动化与计算杂志（英）/International Journal of Automation and Computing, 2012, 9(3): 237-247. doi: 10.1007/s11633-012-0640-6
 引用本文: Arthur Anyakwo, Crinela Pislaru, Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact[J]. 国际自动化与计算杂志（英）/International Journal of Automation and Computing, 2012, 9(3): 237-247.
Arthur Anyakwo, Crinela Pislaru and Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact. International Journal of Automation and Computing, vol. 9, no. 3, pp. 237-247, 2012 doi:  10.1007/s11633-012-0640-6
 Citation: Arthur Anyakwo, Crinela Pislaru and Andrew Ball. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact. International Journal of Automation and Computing, vol. 9, no. 3, pp. 237-247, 2012

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈