Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks

Xu-Yang Lou Bao-Tong Cui

Xu-Yang Lou, Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2007, 4(3): 304-314. doi: 10.1007/s11633-007-0304-0
引用本文: Xu-Yang Lou, Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2007, 4(3): 304-314. doi: 10.1007/s11633-007-0304-0
Xu-Yang Lou and Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks. International Journal of Automation and Computing, vol. 4, no. 3, pp. 304-314, 2007 doi:  10.1007/s11633-007-0304-0
Citation: Xu-Yang Lou and Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks. International Journal of Automation and Computing, vol. 4, no. 3, pp. 304-314, 2007 doi:  10.1007/s11633-007-0304-0

Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks

doi: 10.1007/s11633-007-0304-0
基金项目: 

This work is supported by the National Natural Science Foundation of China (No.60674026);the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).

Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks

Funds: 

This work is supported by the National Natural Science Foundation of China (No.60674026);the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).

  • 摘要: This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay.Some Lyapunov-Krasovskii functionals are constructed and the linear matrix inequality(LMI)approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence,uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties.By using Leihniz-Newton formula,free weighting matrices are employed to express this relationship,which implies that the new criteria are less conservative than existing ones.Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.
  • [1] S.Arik.Stability Analysis of Delayed Neural Networks.IEEE Transactions on Circuits and Systems Part Ⅰ:Regular Papers,vol.47,no.7,pp.1089-1092,2000.
    [2] X.F.Liao,G.Chen,E.N.Sanchez.LMI-based Approach for Asymptotically Stability Analysis of Delayed Neural Networks.IEEE Transactions on Circuits and Systems Part Ⅰ,vol.49,no.7,pp.1033-1039,2002.
    [3] M.Forti.On Global Asymptotic Stability of a Class of Nonlinear Systems Arising in Neural Network Theory.Journal of Differential Equations,vol.113,no.1,pp.246-264,1994.
    [4] K.Gopalsamy,X.Z.He.Stability in Asymmetric Hopfield Nets with Transmission Delays.Piysica D:Nonlinear Phenomena,vol.76,no.4,pp.344-358,1994.
    [5] M.Joy.Results Concerning the Absolute Stability of Delayed Neural Networks.Neural Networks,vol.13,no.6,pp.613-616,2000.
    [6] T.P.Chen,L.B.Rong.Delay-independent Stability Analysis of Cohen-Grossberg Neural Networks.Physics Letters A,vol.317,no.5-6,pp.436-449,2003.
    [7] X.F.Liao,C.G.Li,K.W.Wong.Criteria for Exponential Stability of Cohen-Grossberg Neural Networks.Neural Networks,vol.17,no.10,pp.1401-1414,2004.
    [8] J.Cao.Periodic Oscillation and Exponential Stability of Delayed CNNs.Physics Letters A,vol.270,no.3-4,pp.157-163,2000.
    [9] J.D.Cao.Global Stability Conditions for Delayed CNNs.IEEE Transactions on Circuits and Systems-Part Ⅰ,vol.48,no.11,pp.1330-1333,2001.
    [10] J.D.Cao,D.M.Zhou.Stability Analysis of Delayed Cellular Neural Networks.Neural Networks,vol.11,no.9,pp.1601-1605,1998.
    [11] J.D.Cao,X.L.Li.Stability in Delayed Cohen-Grossberg Neural Networks:LMI Optimization Approach.Physica D:Nonlinear Phenomena,vol.212,no.1-2,pp.54-65,2005.
    [12] X.Y.Lou,B.T.Cui.Novel Global Stability Criteria for Highorder Hopfield-type Neural Networks with Timevarying Delays.Journal of Mathematical Analysis and Applications,vol.330,no.1,pp.144-158,2007.
    [13] X.Y.Lou,B.T.Cui.Stochastic Exponential Stability for Markovian Jumping BAM Neural Networks with Timevarying Delays.IEEE Transactions on Systems,Man,and Cybernetics Part B:Cybernetics,vol.37,no.3,pp.713-719,2007.
    [14] Y.He,Q.G.Wang,M.Wu.LMI-based Stability Criteria for Neural Networks with Multiple Time-varying Delays.Physica D:Nonlinear Phenomena,vol.212,no.1-2,pp.126-136,2005.
    [15] X.F.Liao,G.Chen,E.N.Sanchez.Delay-dependent Exponential Stability Analysis of Delayed Neural Networks:an LMI Approach.Neural Networks,vol.15,no.7,pp.855-866,2002.
    [16] Y.He,M.Wu,J.H.She.Delay-dependent Exponential Stability of Delayed Neural Networks with Time-varyind Delay.IEEE Transactions on Circuits and Systems Part Ⅱ:Express Briefs,vol.53,no.7,pp.553-557,2006.
    [17] S.Boyd,L.Ghaoui,E.Feron,V.Balakrishnan.Linear Matrix Inequalities in System and Control Theory-SIAM Stidies in Applied Mathematics,Society for Industrial Mathematics,Philadelphia,Pennsylvania,1994.
    [18] H.Ye,A.N.Michel.Robust Stability of Nonlinear Timedelay Systems with Applications to Neural Networks.IEEE Transactions on Circuits and Systems Part Ⅰ:Regular Papers,vol.43,no.7,pp.532-543,1996.
    [19] X.Liao,J.Yu.Robust Stability for Interval Hopfield Neural Networks with Time-delay.IEEE Transactions on Neural Networks,vol.9,no.1,pp.1042-1045,1998.
    [20] X.Y.Lou,B.T.Cui.Robust Exponential Stabilization of a Class of Delayed Neural Networks with Reaction DifTuusion Terms.International Journal of Neural Systems,vol.16,no.6,pp.435-443,2006.
    [21] S.Arik.Global Robust Stability of Delayed Neural Networks.IEEE Transactions on Circuits and Systems Part Ⅰ:Regular Papers,vol.50,no.1,pp.156-160,2003.
    [22] C.D.Li,X.F.Liao,R.Zhang,A.Prasad.Global Robust Exponential Stability Analysis for Interval Neural Networks with Time-varying Delays.Chaos,Solitons & Fractals,vol.25,no.3,pp.751-757,2005.
    [23] J.D.Cao,D.S.Huang,Y.Z.Qu.Global Robust Stability of Delayed Recurrent Neural Networks.Chaos,Solitons & Fractals,vol.23,no.1,pp.221-229,2005.
    [24] J.D.Cao,H.X.Li,L.Han.Novel Results Concerning Global Robust Stability of Delayed Neural Networks.Nonlinear Analysis:Real WorW Applications,vol.7,no.3,pp.458-469,2006.
    [25] N.H.Farra,P.Mhaskar,P.D.Christofides.Output Feedback Control of Switched Nonlinear Systems Using Multiple Lyapunov Functions.Systems 《fe Control Letters,vol.54,no.12,pp.1163-1182,2005.
    [26] P.Peleties,R.DeCarlo.Asymptotic Stability of M-switched Systems Using Lyapunov-like Functions.In Proceedings of American Control Conference,Boston,Massachusetts,USA,pp.1679-1684,1991.
    [27] M.S.Branicky.Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems.IEEE Transactions on Automatic Control,vol.43,no.4,pp.475-482,1998.
    [28] J.P.Hespanha,A.S.Morse.Stability of Switched Systems with Average Dwell Time,In Proceedings of 38th IEEE Conference on Decision and Control,IEEE,Arizona,USA,pp.2655-2660,1999.
    [29] D.Liberzon,A.S.Morse.Basic Problems in Stability and Design of Switched Systems.IEEE Control Systems Magazine,vol.19,no.5,pp.59-70,1999.
    [30] M.Demetriou,N.Kazantzis.A New Actuator Activation Policy for Performance Enhancement of Controlled Diffusion Processes.Automatica,vol.40,no.3,pp.415-421,2004.
    [31] B.Hu,X.Xu,P.J.Antsaklis,A.N.Michel.Robust Stabilizing Control Law for a Class of Second-order Switched Systems.Systems & Control Letters,vol.38,no.3,pp.197-207,1999.
    [32] M.A.Wicks,P.Peleties,R.A.DeCarlo.Switched Controller Synthesis for the Quadratic Stabilization of a Pair of Unstable Linear Systems.European Journal of Control,vol.4,no.2,pp.140-147,1998.
    [33] H.Huang,Y.Z.Qu,H.X.Li.Robust Stability Analysis of Switched Hopfleld Neural Networks with Time-varying Delay Under Uncertainty.Physics Letters A,vol.345,no.4-6,pp.345-354,2005.
    [34] D.Yue,Q.L.Han.Delayed Feedback Control of Uncertain Systems with Time-varying Input Delay.Automatica,vol.41,no.2,pp.233-240,2005.
    [35] Y.He,M.Wu,J.H.She,G.P.Liu.Delay-dependent Robust Stability Criteria for Uncertain Neutral Systems with Mixed Delays.Systems 《fe Control Letters,vol.51,no.1,pp.57-65,2004.
    [36] Y.He,M.Wu,J.H.She,G.P.Liu.Parameter-dependent Lyapunov Functional for Stability of Time-delay Systems with Polytopic Type Uncertainties.IEEE Transactions on Automatic Control,vol.49,no.5,pp.828-832,2004.
    [37] M.Wu,Y.He,J.H.She.New Delay-dependent Stability Criteria and Stabilizing Method for Neutral Systems.IEEE Transactions on Automatic Control,vol.49,no.12,pp.2266-2271,2004.
    [38] M.Wu,Y.He,J.H.She,G.P.Liu.Delay-dependent Criteria for Robust Stability of Time-varying Delay Dystems.Automatica,vol.40,no.8,pp.1435-1439,2004.
    [39] P.Gahinet,A.Nemirovski,A.J.Laub,M.Chilali.LMI Control Toolbox-for Use with Matlab,The MathWorks Incorporated,Massachusetts,USA,1995.
    [40] S.H.Lee,T.H.Kim,J.T.Lim.A New Stability Analysis of Switched Systems.Automatica,vol.36,no.6,pp.917-922,2000.
    [41] L.Xie.Output Feedback Hoc Control of Systems with Parameter Uncertainty.International Journal of Control,vol.63,no.4,pp.741-750,1996.
    [42] M.S.Mahmoud,P.Shi.Robust Stability,Stabilization and Hoc Control of Time-delay Systems with Markovian Jump Parameters.InternationaJ Journal of Robust and Nonlinear Control,vol.13,no.8,pp.755-784,2003.
  • [1] Younes Solgi, Alireza Fatehi, Ala Shariati.  Novel Non-monotonic Lyapunov-Krasovskii Based Stability Analysis and Stabilization of Discrete State-delay System . International Journal of Automation and Computing, 2020, 17(5): 713-732. doi: 10.1007/s11633-020-1222-7
    [2] Horacio Coral-Enriquez, Santiago Pulido-Guerrero, John Cortés-Romero.  Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes . International Journal of Automation and Computing, 2019, 16(6): 812-827. doi: 10.1007/s11633-019-1179-6
    [3] Abdelhafid Zeroual, Nadhir Messai, Sihem Kechida, Fatiha Hamdi.  A Piecewise Switched Linear Approach for Traffic Flow Modeling . International Journal of Automation and Computing, 2017, 14(6): 729-741. doi: 10.1007/s11633-017-1060-4
    [4] Xin-Quan Zhang, Xiao-Yin Li, Jun Zhao.  Stability Analysis and Anti-windup Design of Switched Systems with Actuator Saturation . International Journal of Automation and Computing, 2017, 14(5): 615-625. doi: 10.1007/s11633-015-0920-z
    [5] Abdelkader Khoudiri, Kamel Guesmi, Djillali Mahi.  Piecewise Smooth Dynamical Systems Modeling Based on Putzer and Fibonacci-Horner Theorems: DC-DC Converters Case . International Journal of Automation and Computing, 2016, 13(3): 246-258. doi: 10.1007/s11633-016-1007-1
    [6] Jun-Jun Hui, He-Xin Zhang, Xiang-Yu Kong.  Delay-dependent Non-fragile H Control for Linear Systems with Interval Time-varying Delay . International Journal of Automation and Computing, 2015, 12(1): 109-116. doi: 10.1007/s11633-014-0851-0
    [7] Jun-Jun Hui, He-Xin Zhang, Xiang-Yu Kong, Xin Zhou.  On Improved Delay-dependent Robust Stability Criteria for Uncertain Systems with Interval Time-varying Delay . International Journal of Automation and Computing, 2015, 12(1): 102-108. doi: 10.1007/s11633-014-0822-5
    [8] Xiao-Fang Hong, Yu-Zhen Wang, Hai-Tao Li.  Robust H Filter Design for Time-delay Systems with Saturation . International Journal of Automation and Computing, 2013, 10(4): 368-374. doi: 10.1007/s11633-013-0733-x
    [9] P. Balasubramaniam,  T. Senthilkumar.  Delay-dependent Robust Stabilization and H Control for Uncertain Stochastic T-S Fuzzy Systems with Discrete Interval and Distributed Time-varying Delay . International Journal of Automation and Computing, 2013, 10(1): 18-31 . doi: 10.1007/s11633-013-0692-2
    [10] N. Chaibi,  E. H. Tissir,  A. Hmamed.  Delay Dependent Robust Stability of Singular Systems with Additive Time-varying Delays . International Journal of Automation and Computing, 2013, 10(1): 85-90 . doi: 10.1007/s11633-013-0700-6
    [11] Robust Stability and Stabilization of Discrete Singular Systems with Interval Time-varying Delay and Linear Fractional Uncertainty . International Journal of Automation and Computing, 2012, 9(1): 8-15. doi: 10.1007/s11633-012-0610-z
    [12] Xin-Quan Zhang, Jun Zhao.  L2-gain Analysis and Anti-windup Design of Discrete- time Switched Systems with Actuator Saturation . International Journal of Automation and Computing, 2012, 9(4): 369-377. doi: 10.1007/s11633-012-0657-x
    [13] Hong-Bing Zeng, Shen-Ping Xiao, Bin Liu.  New Stability Criteria for Recurrent Neural Networks with a Time-varying Delay . International Journal of Automation and Computing, 2011, 8(1): 128-133. doi: 10.1007/s11633-010-0564-y
    [14] Further Results on Delay-distribution-dependent Robust Stability Criteria for Delayed Systems . International Journal of Automation and Computing, 2011, 8(1): 23-28. doi: 10.1007/s11633-010-0550-4
    [15] Chang-An Jiang,  Ming-Cong Deng,  Akira Inoue.  Robust Stability of Nonlinear Plants with a Non-symmetric Prandtl-Ishlinskii Hysteresis Model . International Journal of Automation and Computing, 2010, 7(2): 213-218. doi: 10.1007/s11633-010-0213-5
    [16] Zhi-Sheng Chen, Yong He, Min Wu.  Robust Fuzzy Tracking Control for Nonlinear Networked Control Systems with Integral Quadratic Constraints . International Journal of Automation and Computing, 2010, 7(4): 492-499. doi: 10.1007/s11633-010-0532-6
    [17] Guang-Deng Zong,  Jia Liu.  New Delay-dependent Global Asymptotic Stability Condition for Hopfield Neural Networks with Time-varying Delays . International Journal of Automation and Computing, 2009, 6(4): 415-419. doi: 10.1007/s11633-009-0415-x
    [18] Yu Yao, Rui Zhang.  Improved Parameter-dependent H Filtering for Polytopic Delta Operator Systems . International Journal of Automation and Computing, 2009, 6(2): 171-176. doi: 10.1007/s11633-009-0171-y
    [19] Yong-Gang Chen, Wei-Ping Bi.  New Robust Exponential Stability Analysis for Uncertain Neural Networks with Time-varying Delay . International Journal of Automation and Computing, 2008, 5(4): 395-400. doi: 10.1007/s11633-008-0395-2
    [20] Xiao-Bing Hu,  Wen-Hua Chen.  A Modified Model Predictive Control Scheme . International Journal of Automation and Computing, 2005, 2(1): 101-106. doi: 10.1007/s11633-005-0101-6
  • 加载中
计量
  • 文章访问数:  4562
  • HTML全文浏览量:  38
  • PDF下载量:  1844
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-11-06
  • 修回日期:  2007-04-12
  • 刊出日期:  2007-07-15

Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks

doi: 10.1007/s11633-007-0304-0
    基金项目:

    This work is supported by the National Natural Science Foundation of China (No.60674026);the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).

摘要: This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay.Some Lyapunov-Krasovskii functionals are constructed and the linear matrix inequality(LMI)approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence,uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties.By using Leihniz-Newton formula,free weighting matrices are employed to express this relationship,which implies that the new criteria are less conservative than existing ones.Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.

English Abstract

Xu-Yang Lou, Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2007, 4(3): 304-314. doi: 10.1007/s11633-007-0304-0
引用本文: Xu-Yang Lou, Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks[J]. 国际自动化与计算杂志(英)/International Journal of Automation and Computing, 2007, 4(3): 304-314. doi: 10.1007/s11633-007-0304-0
Xu-Yang Lou and Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks. International Journal of Automation and Computing, vol. 4, no. 3, pp. 304-314, 2007 doi:  10.1007/s11633-007-0304-0
Citation: Xu-Yang Lou and Bao-Tong Cui. Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks. International Journal of Automation and Computing, vol. 4, no. 3, pp. 304-314, 2007 doi:  10.1007/s11633-007-0304-0
参考文献 (42)

目录

    /

    返回文章
    返回