[1] G. Ellis. Observers in Control Systems: A Practical Guide,New York: Academic Press, 2002.
[2] M. Boukattaya, T, Damak, M. Jallouli. Robust adaptivecontrol for mobile manipulators. International Journal ofAutomation and Computing, vol. 8, no. 1, pp. 8-13, 2011.
[3] M. H. Ben, R. Neila, D. Tarak. Adaptive terminal slid-ing mode control for rigid robotic manipulators. Interna-tional Journal of Automation and Computing, vol. 8, no. 2,pp. 215-220, 2011.
[4] Y. F. Wang, T. Y. Chai, Y. M. Zhang. State observer-basedadaptive fuzzy output-feedback control for a class of un-certain nonlinear systems. Information Sciences, vol. 180,no. 24, pp. 5029-5040, 2010.
[5] T. T. Arif. Adaptive control of rigid body satellite. Interna-tional Journal of Automation and Computing, vol. 5, no. 3,pp. 296-306, 2008.
[6] L. X. Wang. Adaptive Fuzzy Systems and Control: Designand Stability Analysis, Englewood Cliffs, NJ: Prentice-Hall,1994.
[7] Y. J. Liu, W. Wang, S. C. Tong, Y. S. Liu. Robust adap-tive tracking control for nonlinear systems based on boundsof fuzzy approximation parameters. IEEE Transactions onSystems, Man, and Cybernetics, Part A: Systems and Hu-mans, vol. 40, no. 1, pp. 170-184, 2010.
[8] A. Poursamad, A. H. Davaie-Markazi. Robust adaptivefuzzy control of unknown chaotic systems. Applied SoftComputing, vol. 9, no. 3, pp. 970-976, 2009.
[9] Y. J. Liu, S. C. Tong, W. Wang. Adaptive fuzzy outputtracking control for a class of uncertain nonlinear systems.Fuzzy Sets and Systems, vol. 160, no. 19, pp. 2727-2754,2009.
[10] B. Chen, X. P. Liu, S. C. Tong. Adaptive fuzzy out-put tracking control of MIMO nonlinear uncertain sys-tems. IEEE Transactions on Fuzzy Systems, vol. 15, no. 2,pp. 287-300, 2007.
[11] F. Qiao, Q. M. Zhu, A. F. T. Winfield, C. Melhuish. Adap-tive sliding mode control for MIMO nonlinear systems basedon fuzzy logic scheme. International Journal of Automationand Computing, vol. 1, no. 1, pp. 51-62, 2004.
[12] S. Labiod, M. S. Boucherit, T. M. Guerra. Adaptive fuzzycontrol of a class of MIMO nonlinear systems. Fuzzy Setsand Systems, vol. 151, no. 1, pp. 59-77, 2005.
[13] H. Yousef, E. El-Madbouly, D. Eteim, M. Hamdy. Adaptivefuzzy semi-decentralized control for a class of large-scalenonlinear systems with unknown interconnections. Interna-tional Journal of Robust and Nonlinear Control, vol. 16,no. 15, pp. 687-708, 2006.
[14] H. Yousef, M. Hamdy, E. El-Madbouly, D. Eteim. Adaptivefuzzy decentralized control for interconnected MIMO non-linear subsystems. Automatica, vol. 45, no. 2, pp. 456-462,2009.
[15] H. Yousef, M. Hamdy, E. El-Madbouly. Robust adaptivefuzzy semi-decentralized control for a class of large-scalenonlinear systems using input-output linearization concept.International Journal of Robust and Nonlinear Control,vol. 20, no. 1, pp. 27-40, 2010.
[16] J. X. Lee, G. Vukovich. The dynamic fuzzy logic system:Nonlinear system identification and application to roboticmanipulators. Journal of Robotic Systems, vol. 14, no. 6,pp. 391-405, 1997.
[17] J. X. Lee, G. Vukovich. Stable identification and adaptivecontrol: A dynamic fuzzy logic system approach. FuzzyEvolutionary Computation, Dordrecht, Boston: KluwerAcademic Publishers, pp. 224-248, 1997.
[18] O. V. R. Murthy, R. K. P. Bhatt, N. Ahmed. Extendeddynamic fuzzy logic system (DFLS) based indirect stableadaptive control of non-linear systems. Applied Soft Com-puting, vol. 4, no. 2, pp. 109-119, 2004.
[19] M. Hamdy, G. El-Ghazaly. Extended dynamic fuzzy logicsystem for a class of MIMO nonlinear systems and its ap-plication to robotic manipulators. Robotica, vol. 31, no. 2,pp. 251-265, 2013.
[20] S. C. Tong, H. X. Li, W. Wang. Observer-based adaptivefuzzy control for SISO nonlinear systems. Fuzzy Sets andSystems, vol. 148, no. 3, pp. 355-376, 2004.