Home  |  About Journal  |  Editorial Board  |  For Authors  |  For Referees  |  For Readers  |  Subscription  |  Contract Us
International Journal of Automation and Computing 2018, Vol. 15 Issue (5) :515-524    DOI: 10.1007/s11633-018-1130-2
Special Issue on Intelligent Control and Computing in Advanced Robotics Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
Software for Small-scale Robotics: A Review
Tobias Tiemerding1,2, Sergej Fatikow1
1. Department of Computing Science, Division Microrobotics and Control Engineering (AMiR), University of Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg D-26129, Germany;
2. OFFIS-Institute for Information Technology, R&D Division Automation and Integration Technology (AIT), Escherweg 2, Oldenburg D-26121, Germany
Download: [PDF 11239KB] HTML()   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In recent years, a large number of relatively advanced and often ready-to-use robotic hardware components and systems have been developed for small-scale use. As these tools are mature, there is now a shift towards advanced applications. These often require automation and demand reliability, efficiency and decisional autonomy. New software tools and algorithms for artificial intelligence (AI) and machine learning (ML) can help here. However, since there are many software-based control approaches for small-scale robotics, it is rather unclear how these can be integrated and which approach may be used as a starting point. Therefore, this paper attempts to shed light on existing approaches with their advantages and disadvantages compared to established requirements. For this purpose, a survey was conducted in the target group. The software categories presented include vendor-provided software, robotic software frameworks (RSF), scientific software and in-house developed software (IHDS). Typical representatives for each category are described in detail, including SmarAct precision tool commander, MathWorks Matlab and national instruments LabVIEW, as well as the robot operating system (ROS). The identified software categories and their representatives are rated for end user satisfaction based on functional and non-functional requirements, recommendations and learning curves. The paper concludes with a recommendation of ROS as a basis for future work.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsRobotic control   software engineering   micro/nano robotics   artificial intelligence (AI)   machine learning (ML)   open source     
Received: 2018-01-15;
Corresponding Authors: Tobias Tiemerding     Email: tobias.tiemerding@uni-oldenburg.de
About author: Tobias Tiemerding has published 52 conference and journal papers and a book chapter. His research interests include microrobotics, automation, software-based control and high-speed image processing. E-mail: tobias.tiemerding@uni-oldenburg.de (Corresponding author) ORCID iD: 0000-0003-1800-4758;Sergej Fatikow research interests include micro/nanorobotics, industrial robotics and automation at nanoscale, nanohandling inside SEM, AFM-based nanohandling, sensor feedback at nanoscale, and robot control.E-mail: fatikow@uni-oldenburg.de
Cite this article:   
Tobias Tiemerding, Sergej Fatikow. Software for Small-scale Robotics: A Review[J]. International Journal of Automation and Computing , vol. 15, no. 5, pp. 515-524, 2018.
URL:  
http://www.ijac.net/EN/10.1007/s11633-018-1130-2      或     http://www.ijac.net/EN/Y2018/V15/I5/515
 
[1] M. Sitti. Mobile Microrobotics, Cambridge, Massachusetts, London, UK: The MIT Press, 2017.
[2] J. J. Abbott, Z. Nagy, F. Beyeler, B. J. Nelson. Robotics in the small, Part I: microbotics. IEEE Robotics & Automation Magazine, vol. 14, no. 2, pp. 92-103, 2007. DOI: 10.1109/MRA.2007.380641 IEEE Robotics target="_blank">
[3] B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, vol. 12, pp. 55-85, 2010. DOI: 10.1146/annurev-bioeng-010510-103409
[4] S. Fatikow. Automated Nanohandling by Microrobots, London, UK: Springer, 2008. DOI: 10.1007/978-1-84628-978-1.
[5] M. Sitti, H. Ceylan, W. Q. Hu, J. Giltinan, M. Turan, S. Yim, E. Diller. Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, vol. 103, no. 2, pp. 205-224, 2015. DOI: 10.1109/JPROC.2014.2385105
[6] M. Probst, C. Hürzeler, R. Borer, B. J. Nelson. A microassembly system for the flexible assembly of hybrid robotic mems devices. International Journal of Optomechatronics, vol. 3, no. 2, pp. 69-90, 2009. DOI: 10.1080/15599610902894592
[7] B. Tamadazte, N. L. F. Piat, S. Dembélé. Robotic micromanipulation and microassembly using monoview and multiscale visual servoing. IEEE/ASME Transactions on Mechatronics, vol. 16, no. 2, pp. 277-287, 2011. DOI: 10.1109/TMECH.2010.2040900
[8] C. Diederichs, M. Mikczinski, T. Tiemerding. A flexible and compact high precision micro-factory for low volume production and lab-automation. In Proceedings of the 41st International Symposium on Robotics, IEEE, Munich, Germany, pp. 461-467, 2014.
[9] S. Zimmermann, T. Tiemerding, T. Li, W. R. Wang, Y. L. Wang, S. Fatikow. Automated mechanical characterization of 2-D materials using SEM based visual servoing. International Journal of Optomechatronics, vol. 7, no. 4, pp. 283-295, 2013. DOI: 10.1080/15599612.2013.879501
[10] B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, vol. 12, pp. 55-85, 2010. DOI: 10.1146/annurev-bioeng-010510-103409
[11] H. Ceylan, J. Giltinan, K. Kozielski, M. Sitti. Mobile microrobots for bioengineering applications. Lab on a Chip, vol. 17, no. 10, pp. 1705-1724, 2017. DOI: 10.1039/C7LC00064B
[12] M. von Essen, J. Hirvonen, S. Kuikka, P. Kallio. Towards fully automated pick and place operations of individual natural fibers. In Proceedings of International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, IEEE, Suzhou, China, pp. 21-26, 2013. DOI: 10.1109/3M-NANO.2013.6737419.
[13] D. Heriban, M. Gauthier. Robotic micro-assembly of microparts using a piezogripper. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nice, France, pp. 4042-4047, 2008. DOI: 10.1109/IROS.2008.4650932.
[14] Q. Shi, Z. Yang, Y. N. Guo, H. P. Wang, L. N. Sun, Q. Huang, T. Fukuda. A vision-based automated manipulation system for the pick-up of carbon nanotubes. IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 845-854, 2017. DOI: 10.1109/TMECH.2017.2649681
[15] Y. Sun, X. Y. Liu, Micro- and Nanomanipulation Tools. Weinhem, Germany: Wiley-VCH, 2015.
[16] S. van Petegem, A. Guitton, M. Dupraz, A. Bollhalder, K. Sofinowski, M. V. Upadhyay, H. van Swygenhoven. A miniaturized biaxial deformation rig for in situ mechanical testing. Experimental Mechanics, vol. 57, no. 4, pp. 569-580, 2017. DOI: 10.1007/s11340-016-0244-0
[17] M. Abadi, P. Barham, J. M. Chen, Z. F. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Q. Zheng. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, USENIX Association, Savannah, USA, 2016.
[18] R. Lopez. Open NN: An open source neural networks C++ library [software], [Online], Available: www.cimne.com/flood, May, 2014.
[19] D. Hart, B. Goertzel. OpenCog: A software framework for integrative artificial general intelligence. In Proceedings of the 1st Conference on Artificial General Intelligence, Memphis, USA, pp. 468-472, 2008.
[20] M. Tenorth, J. Winkler, D. Beßler, M. Beetz. Open-ease: a cloud-based knowledge service for autonomous learning. KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 407-411, 2015. DOI: 10.1007/s13218-015-0364-1
[21] T. Tiemerding, M. von Essen, C. Diederichs, P. Kallio, S. Fatikow. Integrating robotic software frameworks for convenient software component exchange in micro- and nanoscale applications. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, Besacon, France, pp. 978-983, 2014.
[22] G. F. Bishop. Experiments with the middle response alternative in survey questions. Public Opinion Quarterly, vol. 51, no. 2, pp. 220-232, 1987. DOI: 10.1086/269030
[23] R. Garland. The mid-point on a rating scale: Is it desirable? Marketing Bulletin, vol. 2, pp. 66-70, 1991.
[24] G. W. Yun, C. W. Trumbo. Comparative response to a survey executed by post, e-mail, & web form. Journal of Computer-Mediated Communication, vol. 6, no. 1, 2000. DOI: 10.1111/j.1083-6101.2000.tb00112.x
[25] C. Y. Shi, D. K. Luu, Q. M. Yang, J. Liu, J. Chen, C. H. Ru, S. R. Xie, J. Luo, J. Ge, Y. Sun. Recent advances in nanorobotic manipulation inside scanning electron microscopes. Microsystems & Nanoengineering, vol. 2, Article number 16024, 2016. DOI: 10.1038/micronano.2016.24. Microsystems target="_blank">
[26] C. Cassier, A. Ferreira, S. Hirai. Combination of vision servoing techniques and VR-based simulation for semi-autonomous microassembly workstation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Washington DC, USA, pp. 1501-1506, 2002.
[27] Q. Zhou, P. Korhonen, Q. Zhou, J. Laitinen, S. Sjövall. Automatic dextrous microhandling based on a 6-DOF microgripper. Journal of Micromechatronics, vol. 3, no. 3, pp. 359-387, 2006. DOI: 10.1163/156856306777924662
[28] M. Bartenwerfer, C. Diederichs, S. Fatikow. Automated robotic assembly for a micro-cartridge system inside the scanning electron microscope. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 5197-5202, 2014.
[29] C. Diederichs, M. Bartenwerfer, M. Mikczinski, S. Zimmermann, T. Tiemerding, C. Geldmann, H. Nguyen, C. Dahmen, S. Fatikow. A rapid automation framework for applications on the micro- and nanoscale. In Proceedings of Australasian Conference on Robotics and Automation, Sydney, Australia, 2013.
[30] M. von Essen, J. Hirvonen, S. Kuikka, P. Kallio. Robotic software frameworks and software component models in the development of automated handling of individual natural fibers. Journal of Micro-Bio Robotics, vol. 9, no. 1-2, pp. 29-45, 2014. DOI: 10.1007/s12213-014-0078-8
[31] A. V. Kudryavtsev, G. J. Laurent, C. Clévy, B. Tamadazte, P. Lutz. Characterization of model-based visual tracking techniques for moems using a new block set for MATLAB/simulink. In Proceedings of International Symposium on Optomechatronic Technologies, IEEE, Seattle, USA, pp. 163-168, 2014.
[32] D. Brugali. Software Engineering for Experimental Robotics, Berlin Heidelberg, Germany: Springer, 2007. DOI: 10.1007/978-3-540-68951-5.
[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Ng. Ros: an open-source robot operating system. In Proceedings of ICRA Workshop on Open Source Software, Kobe, Japan, 2009.
[34] J. Jackson. Microsoft robotics studio: a technical introduction. IEEE Robotics & Automation Magazine, vol. 14, no. 4, pp. 82-87, 2007. DOI: 10.1109/M-RA.2007.905745
[35] P. I. Corke. A robotics toolbox for Matlab. IEEE Robotics & Automation Magazine, vol. 3, no. 1, pp. 24-32, 1996. DOI: 10.1109/100.486658
[36] N. Quijano, K. Passino, S. Jogi. A tutorial introduction to control systems development and implementation with dSPACE, Tutorial, 2002.
[37] B. P. Gerkey, R. T. Vaughan, A. Howard. The Player/stage project: tools for multi-robot and distributed sensor systems. In Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, pp. 317-323, 2003.
[38] G. Bradski. The Opencv library. Dr. Dobb's Journal of Software Tools, 2000
[39] H. R. Kam, S. H. Lee, T. Park, C. H. Kim. RViz: A toolkit for real domain data visualization. Telecommunication Systems, vol. 60, no. 2, pp. 337-345, 2015. DOI: 10.1007/s11235-015-0034-5
[40] E. Rohmer, S. P. N. Singh, M. Freese. V-REP: A versatile and scalable robot simulation framework. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 1321-1326, 2013. DOI: 10.1109/IROS.2013.6696520.
[41] Eacute;. Marchand, F. Spindler, F. Chaumette. VISP for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics & Automation Magazine, vol. 12, no. 4, pp. 40-52, 2005. DOI: 10.1109/MRA.2005.1577023 IEEE Robotics target="_blank">
[42] Eacute;. Marchand. VISP: a software environment for eye-in-hand visual servoing. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Detroit, USA, pp. 3224-3229, 1999. DOI: 10.1109/ROBOT.1999.774089.
[43] H. Bruyninckx. Open robot control software: The orocos project. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seoul, South Korea, pp. 2523-2528, 2001.
[44] S. Joyeux, J. Albiez. Robot development: From components to systems. In Proceedings of the 6th National Conference on Control Architectures of Robots, Grenoble, France, 2011.
[45] T. Tašner, D. Lovrec, F. Tašner, J. Edler. Comparison of LabVIEW and MATLAB for scientific research. In Proceedings of Annals of the Faculty of Engineering Hunedoara, Hunedoara, Romania, pp. 389-394, 2012.
[46] P. Elfert, T. Tiemerding, S. Fatikow. Integration of different hardware interfacing protocols into a robotic software framework. In Proceedings of International Conference on Manipulation, Automation and Robotics at Small Scales, IEEE, Paris, France, 2016. DOI: 10.1109/MARSS.2016.7561723.
[47] J. Travis, J. Kring, LabVIEW for Everyone : Graphical Programming Made Easy and Fun, 3rd ed., Upper Saddle River, USA: Prentice Hall, 2006.
[48] V. Sariola. Droplet self-alignment: high-precision robotic microassembly and self-assembly; Pisaran itsekohdistus: Tarkkuusmikrokokoonpano hyōdyntäen robotiikkaa ja itsekokoonpanoa, 2012, [Online], Available: http://urn.fi/URN:ISBN:978-952-60-4641-9, 2012.
[49] D. Gendreau, M. Gauthier, D. Hériban, P. Lutz. Modular architecture of the microfactories for automatic micro-assembly. Robotics and Computer-integrated Manufacturing, vol. 26, no. 4, pp. 354-360, 2010. DOI: 10.1016/j.rcim.2009.11.013
[50] M. Gauthier, D. Heriban, D. Gendreau, S. Regnier, N. Chaillet, P. Lutz. Micro-factory for submerged assembly: interests and architectures. In Proceedings of the 5th International Workshop on MicroFactories, Besancon, France, 2006.
[51] R. Cope. Seven reasons why closed source is better than open source, or so it seems, 2013, [Online], Available: https://opensource.com/business/13/10/seven-reasons-closed-better-than-open-source, October 31, 2013.
[52] N. Marturi. Vision and Visual Servoing for Nanomanipulation and Nanocharacterization in Scanning Electron Microscope, Ph. D. dissertation, University of Frachche-Comte, France, 2013.
[53] H. W. Jung, S. G. Kim, C. S. Chung. Measuring software product quality: A survey of ISO/IEC 9126. IEEE Software, vol. 21, no. 5, pp. 88-92, 2004. DOI: 10.1109/MS.2004.1331309
[54] Software engineering - Product quality, Part 1: Quality model, ISO/IEC 9126-1, 2001.
[55] Systems and software engineering-systems and software quality requirements and evaluation (SQuaRE)-system and software quality models, ISO25010-2011, 2011. (in Chinese)
Copyright 2010 by International Journal of Automation and Computing