Home  |  About Journal  |  Editorial Board  |  For Authors  |  For Referees  |  For Readers  |  Subscription  |  Contract Us
International Journal of Automation and Computing 2018, Vol. 15 Issue (5) :547-558    DOI: 10.1007/s11633-018-1145-8
Special Issue on Intelligent Control and Computing in Advanced Robotics Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
Rotorcraft with a 3DOF Rigid Manipulator: Quaternion-based Modeling and Real-time Control Tolerant to Multi-body Couplings
J. Alvarez-Munoz1, N. Marchand2, J. F. Guerrero-Castellanos3, J. J. Tellez-Guzman2, J. Escareno4, M. Rakotondrabe5
1. Polytechnic Institute of Advanced Sciences, FR 94200 Paris, France;
2. Univ. Grenoble Alpes, GIPSA-Lab, FR-38000 Grenoble, France;
3. Autonomous University of Puebla (BUAP), Faculty of Electronics, MX 72570 Puebla, Mexico;
4. University of Limoges ENSIL - ENSCI, XLIM Laboratory UMR CNRS 7252, Parc Ester Technopole, 16 rue Atlantis, Limoges 87068, France;
5. FEMTO-ST Institute, UMR CNRS-UFC/ENSMM/UTBM, Automatic Control and Micro-Mechatronic Department, FR Besançon, France
Download: [PDF 20433KB] HTML()   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract This paper proposes a simple solution for the stabilization of a mini-quadcopter carrying a 3DoF (degrees of freedom) manipulator robot in order to enhance its achievable workspace and application profile. Since the motion of the arm induces torques which degrade the stability of the system, in the present work, we consider the stabilization of both subsystems: the quadcopter and the robotic arm. The mathematical model of the system is based on quaternions. Likewise, an attitude control law consisting of a bounded quaternion-based feedback stabilizes the quadcopter to a desired attitude while the arm is evolving. The next stage is the translational dynamics which is simplified for control (nonlinear) design purposes. The aforementioned controllers are based on saturation functions whose stability is explicitly proved in the Lyapunov sense. Finally, experimental results and a statistical study validate the proposed control strategy.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsObserver-based control   quaternion and Newton-Euler modeling   bounded-input control   aerial manipulator   disturbance rejection     
Received: 2018-02-16; published: 2018-06-29
Fund:

This work was supported by CONACYT-Mexico, LabEx PERSYVAL-Lab (No. ANR-11-LABX-0025) and Equipex ROBOTEX (No. ANR-10-EQPX-44-01).

Corresponding Authors: J. Alvarez-Munoz     Email: jonatan.alvarez@ipsa.fr
About author: J. Alvarez-Munoz. E-mail:jonatan.alvarez@ipsa.fr (Corresponding author)ORCID iD:0000-0003-1038-6800;N. Marchand. E-mail:Nicolas.Marchand@gipsa-lab.fr;J. F. Guerrero-Castellanos. E-mail:fermi.guerrero@correo.buap.mx;J. J. Tellez-Guzman. E-mail:jose-juan.tellez-guzman@gipsa-lab.grenoble-inp.fr;J. Escareno. E-mail:juan-antonio.escareno@ipsa.fr;M. Rakotondrabe. E-mail:mrakoton@femto-st.fr
Cite this article:   
J. Alvarez-Munoz, N. Marchand, J. F. Guerrero-Castellanos, J. J. Tellez-Guzman, J. Escareno, M. Rakotondrabe. Rotorcraft with a 3DOF Rigid Manipulator: Quaternion-based Modeling and Real-time Control Tolerant to Multi-body Couplings[J]. International Journal of Automation and Computing , vol. 15, no. 5, pp. 547-558, 2018.
URL:  
http://www.ijac.net/EN/10.1007/s11633-018-1145-8      或     http://www.ijac.net/EN/Y2018/V15/I5/547
 
[1] D. Mellinger, M. Shomin, N. Michael, V. Kumar. Cooperative grasping and transport using multiple quadrotors. In Proceedings of International Symposium on Distributed Autonomous Robotic Systems, Springer, Lausanne, Switzerland, pp. 545-558, 2010.
[2] M. Mohammadi, A. Franchi, D. Barcelli, D. Prattichizzo. Cooperative aerial tele-manipulation with haptic feedback. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, pp. 5092-5098, 2016.
[3] M. Orsag, C. Korpela, S. Bogdan, P. Oh. Lyapunov based model reference adaptive control for aerial manipulation. In Proceedings of International Conference on Unmanned Aircraft Systems, IEEE, Atlanta, USA, pp. 966-973, 2013.
[4] A. E. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, R. Cano. Control of an aerial robot with multi-link arm for assembly tasks. In Proceedings of IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, pp. 4916-4921, 2013.
[5] S. Kim, S. Choi, H. J. Kim. Aerial manipulation using a quadrotor with a two DOF robotic arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 4990-4995, 2013.
[6] J. Thomas, G. Loianno, J. Polin, K. Sreenath, V. Kumar. Toward autonomous avian-inspired grasping for micro aerial vehicles. Bioinspiration and Biomimetics, vol. 9, no. 2, Article number 025010, 2014.
[7] N. Sun, Y. C. Fang, H. Chen, B. Lu. Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2135-2146, 2017. DOI: 10.1109/TIE.2016.2623258
[8] B. Yuksel, G. Buondonno, A. Franchi. Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, pp. 561-566, 2016.
[9] M. D. Shuster. A survey of attitude representations. The Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 439-517, 1993
[10] P. Castillo, A. Dzul, R. Lozano. Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 510-516, 2004. DOI: 10.1109/TCST.2004.825052
[11] J. F. Guerrero-Castellanos, N. Marchand, N. Hably, S. Lesecq, J. Delamare. Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter. Control Engineering Practice, vol. 19, no. 8, pp. 790-797, 2011. DOI: 10.1016/j.conengprac.2011.04.004
[12] A. Alaimo, V. Artale, C. Milazzo, A. Ricciardello, L. Trefiletti. Mathematical modeling and control of a hexacopter. In Proceedings of International Conference on Unmanned Aircraft Systems, IEEE, Atlanta, USA, pp. 1043-1050, 2013.
[13] S. Cho. Dynamics and Control of Underactuated Multibody Spacecraft, Ph. D. dissertation, University of Michigan, USA, 2002.
[14] R. Cruz-Jose, J. F. Guerrero-Castellanos, W. F. Guerrero-Sánchez, J. J. Oliveros-Oliveros. Global stabilizarion of a VTOL mini aircraft. In rocedings of the National Conference of Automatic Control, Campeche, Mexico, pp. 180-185, 2012.
[15] N. Marchand, A. Hably. Global stabilization of multiple integrators with bounded controls. Automatica, vol. 41, no. 12, pp. 2147-2152, 2005. DOI: 10.1016/j.automatica.2005.07.004
[16] A. R. Teel. Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems & Control Letters, vol. 18, no. 3, pp. 165-171, 1992. DOI: 10.1016/0167-6911(92)90001-9
[17] E. N. Johnson, S. K. Kannan. Nested saturation with guaranteed real poles. In Proceedings of American Control Conference, IEEE, Denver, USA, vol. 1, pp. 497-502, 2003.
[18] VICON, [Online], Available: http://www.vicon.com/products/camera-systems.
[19] Build, run, and test real-time applications, [Online], Available: http://fr.mathworks.com/products/simulink-real-time/, December 2017.
[20] E-flite RC, [Online], Available: http://www.horizonhobby.com/content/e-flite-rc.
Copyright 2010 by International Journal of Automation and Computing