Home  |  About Journal  |  Editorial Board  |  For Authors  |  For Referees  |  For Readers  |  Subscription  |  Contract Us
International Journal of Automation and Computing 2018, Vol. 15 Issue (4) :417-430    DOI: 10.1007/s11633-018-1123-1
Research Article Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
Precision Work-piece Detection and Measurement Combining Top-down and Bottom-up Saliency
Jia Sun1,2, Peng Wang1, Yong-Kang Luo1, Gao-Ming Hao1, Hong Qiao1
1 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China
Download: [PDF 2519KB] HTML()   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In this paper, a fast and accurate work-piece detection and measurement algorithm is proposed based on top-down feature extraction and bottom-up saliency estimation. Firstly, a top-down feature extraction method based on the prior knowledge of workpieces is presented, in which the contour of a work-piece is chosen as the major feature and the corresponding template of the edges is created. Secondly, a bottom-up salient region estimation algorithm is proposed, where the image boundaries are labelled as background queries, and the salient region can be detected by computing contrast against image boundary. Finally, the calibration method for vision system with telecentric lens is discussed, and the dimensions of the work-pieces are measured. In addition, strategies such as image pyramids and a stopping criterion are adopted to speed-up the algorithm. An automatic system embedded with the proposed detection and measurement algorithm combining top-down and bottom-up saliency (DM-TBS) is designed to pick out defective work-pieces without any manual auxiliary. Experiments and results demonstrate the effectiveness of the proposed method.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsWork-pieces detection   salient region estimation   top-down and bottom-up saliency (TBS)   calibration   visual measurement     
Received: 2017-12-13;
Fund:

This work was supported by National Natural Science Foundation of China (Nos. 61379097, 91748131, 61771471, U1613213 and 61627808), National Key Research and Development Plan of China (No. 2017YFB1300202), and Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) (No. 2015112).

Corresponding Authors: Peng Wang     Email: peng_wang@ia.ac.cn
About author: Jia Sun received the B.Sc.degree in the measurement and control technology and instrument from North University of China, China in 2009,and the M.Sc.degree in instrument science and technology from the Beijing Institute of Technology,China in 2012.E-mail:jia.sun@ia.ac.cn;Peng Wang received the B.Sc.degree in electrical engineering and automation from Harbin Engineering University,China in 2004. E-mail:peng_wang@ia.ac.cn;Yong-Kang Luo received the Ph.D.degree in control theory and control engineering from University of Chinese Academy of Sciences,China in 2016.E-mail:yongkang.luo@ia.ac.cn;Gao-Ming Hao received the B.Sc.degree in mechanical engineering and automation from Shijiazhuang Tiedao University, China in 2011.E-mail:haogaoming2008@163.com;Hong Qiao received the B.Eng.degree in hydraulics and control,the M.Eng. degree in robotics from Xi'an Jiaotong University,China.E-mail:hong.qiao@ia.ac.cn
Cite this article:   
Jia Sun, Peng Wang, Yong-Kang Luo, Gao-Ming Hao, Hong Qiao. Precision Work-piece Detection and Measurement Combining Top-down and Bottom-up Saliency[J]. International Journal of Automation and Computing , vol. 15, no. 4, pp. 417-430, 2018.
URL:  
http://www.ijac.net/EN/10.1007/s11633-018-1123-1      或     http://www.ijac.net/EN/Y2018/V15/I4/417
 
[1] E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, J. D. Legat. A survey on industrial vision systems, applications and tools. Image and Vision Computing, vol. 21, no. 2, pp. 171-188, 2003. DOI:10.1016/S0262-8856(02)00152-X.
[2] Q. Y. Gu, I. Ishii. Review of some advances and applications in real-time high-speed vision:Our views and experiences. International Journal of Automation and Computing, vol. 13, no. 4, pp. 305-318, 2016. DOI:10.1007/s11633-016-1024-0.
[3] N. Mostofi, F. Samadzadegan, S. Roohy, M. Nozari. Using vision metrology system for quality control in automotive industries. International Society for Photogrammetry and Remote Sensing, vol. XXXIX-B5, pp. 33-37, 2012. DOI:10.5194/isprsarchives-XXXIX-B5-33-2012.
[4] Y. F. Qu, Z. B. Pu, G. D. Liu. Combination of a vision system and a coordinate measuring machine for rapid coordinate metrology. In Proceedings of the SPIE 4927, Optical Design and Testing, SPIE, Shanghai, China, pp. 581-585, 2002. DOI:10.1117/12.471672.
[5] V. Carbone, M. Carocci, E. Savio, G. Sansoni, L. De Chiffre. Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces. The International Journal of Advanced Manufacturing Technology, vol. 17, no. 4, pp. 263-271, 2001. DOI:10.1007/s001700170179.
[6] M. Rak, A. Wózniak. Systematic errors of measurements on a measuring arm equipped with a laser scanner on the results of optical measurements. Advanced Mechatronics Solutions, R. Jabló nski, T. Brezina, Eds., Cham, Germany:Springer, pp. 355-360, 2016. DOI:10.1007/978-3-319-23923-154.
[7] S. Martínez, E. Cuesta, J. Barreiro, B.Álvarez. Analysis of laser scanning and strategies for dimensional and geometrical control. The International Journal of Advanced Manufacturing Technology, vol. 46, no. 5-8, pp. 621-629, 2010. DOI:10.1007/s00170-009-2106-8.
[8] Y. Xie, X. D. Yang, Z. Liu, S. N. Ren, K. Chen. Method for visual localization of oil and gas wellhead based on distance function of projected features. International Journal of Automation and Computing, vol. 14, no. 2, pp. 147-158, 2017. DOI:10.1007/s11633-017-1063-1.
[9] T. H. Sun, C. C. Tseng, M. S. Chen. Electric contacts inspection using machine vision. Image and Vision Computing, vol. 28, no. 6, pp. 890-901, 2010. DOI:10.1016/j.imavis.2009.11.006.
[10] K. T. Maddala, R. H. Moss, W. V. Stoecker, J. R. Hagerty, J. G. Cole, N. K. Mishra, R. J. Stanley. Adaptable ring for vision-based measurements and shape analysis. IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 4, pp. 746-756, 2017. DOI:10.1109/TIM.2017.2650738.
[11] C. X. Jian, J. Gao, Y. H. Ao. Automatic surface defect detection for mobile phone screen glass based on machine vision. Applied Soft Computing, vol. 52, pp. 348-358, 2017. DOI:10.1016/j.asoc.2016.10.030.
[12] S. Ghidoni, M. Finotto, E. Menegatti. Automatic color inspection for colored wires in electric cables. IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 596-607, 2015. DOI:10.1109/TASE.2014.2360233.
[13] M. Ulrich, C. Steger, A. Baumgartner. Real-time object recognition using a modified generalized Hough transform. Pattern Recognition, vol. 36, no. 11, pp. 2557-2570, 2003. DOI:10.1016/S0031-3203(03)00169-9.
[14] C. Steger. Similarity measures for occlusion, clutter, and illumination invariant object recognition. Joint Pattern Recognition Symposium, B. Radig, S. Florczyk, Eds., Berlin Heidelberg, Germany:Springer, pp. 148-154, 2001. DOI:10.1007/3-540-45404-720.
[15] A. Uchida, Y. Ito, K. Nakano. Fast and accurate template matching using pixel rearrangement on the GPU. In Proceedings of the 2nd International Conference on Networking and Computing, IEEE, Osaka, Japan, pp. 153-159, 2011. DOI:10.1109/ICNC.2011.30.
[16] B. K. Choudhary, N. K. Sinha, P. Shanker. Pyramid method in image processing. Journal of Information Systems and Communication, vol. 3, no. 1, pp. 269-273, 2012.
[17] M. Gharavi-Alkhansari. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Transactions on Image Processing, vol. 10, no. 4, pp. 526-533, 2001. DOI:10.1109/83.913587.
[18] N. A. Jalil, A. S. H. Basari, S. Salam, N. K. Ibrahim, M. A. Norasikin. The utilization of template matching method for license plate recognition:A case study in Malaysia. Advanced Computer and Communication Engineering Technology, Cham, Germany:Springer, pp. 1081-1090, 2015. DOI:10.1007/978-3-319-07674-4100.
[19] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, G. W. Cottrell. SUN:A Bayesian framework for saliency using natural statistics. Journal of Vision, vol. 8, no. 7, Article number 32, 2008. DOI:10.1167/8.7.32.
[20] Y. K. Luo, P. Wang, W. Y. Li, X. P. Shang, H. Qiao. Salient object detection based on boundary contrast with regularized manifold ranking. In Proceedings of the 12th World Congress on Intelligent Control and Automation, IEEE, Guilin, China, pp. 2074-2079, 2016. DOI:10.1109/WCICA.2016.7578649.
[21] M. M. Cheng, N. J. Mitra, X. L. Huang, P. H. S. Torr, and S. M. Hu. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 569-582, 2015. DOI:10.1109/TPAMI.2014.2345401.
[22] P. Dollár, C. L. Zitnick. Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 8, pp. 1558-1570, 2015. DOI:10.1109/TPAMI.2014.2377715.
[23] J. B. Wu, Z. P. Yin, Y. L. Xiong. The fast multilevel fuzzy edge detection of blurry images. IEEE Signal Processing Letters, vol. 14, no. 5, pp. 344-347, 2007. DOI:10.1109/LSP.2006.888087.
[24] S. C. Huang, W. C. Chen. A new hardware-efficient algorithm and reconfigurable architecture for image contrast enhancement. IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4426-4437, 2014. DOI:10.1109/TIP.2014.2348869.
[25] C. Steger. Analytical and empirical performance evaluation of sub-pixel line and edge detection. In Proceedings of Empirical Evaluation Methods in Computer Vision, IEEE, Los Alamitos, USA, pp. 1-23, 1998.
[26] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274-2282, 2012. DOI:10.1109/TPAMI.2012.120.
Copyright 2010 by International Journal of Automation and Computing