Home  |  About Journal  |  Editorial Board  |  For Authors  |  For Referees  |  For Readers  |  Subscription  |  Contract Us
International Journal of Automation and Computing 2018, Vol. 15 Issue (2) :125-141    DOI: 10.1007/s11633-017-1106-7
Special Issue on Automation and Computing Advancements for Future Industries Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
State Estimation Using Non-uniform and Delayed Information: A Review
Jhon A. Isaza, Hector A. Botero, Hernan Alvarez
Universidad Nacional de Colombia, Research group on dynamic processes-Kalman Group, Colombia
Download: [PDF 2142KB] HTML()   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The study and application of methods for incorporating nonuniform and delayed information in state estimation techniques are important topics to advance in soft sensor development. Therefore, this paper presents a review of these methods and proposes a taxonomy that allows a faster selection of state estimator in this type of applications. The classification is performed according to the type of estimator, method, and used tool. Finally, using the proposed taxonomy, some applications reported in the literature are described.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsState estimation   asynchronism   delayed measurement   non-uniform information   taxonomy     
Received: 2017-02-14; Revised: 2017-09-28; published: 2017-09-28
Fund:

This work was supported by funding from Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS).

Corresponding Authors: Jhon A. Isaza     Email: jaisazah@unal.edu.co
About author: Jhon A. Isaza received the B.Sc. degree in instrumentation and control engineering from the Politécnico Colombiano Jaime Isaza Cadavid, Colombia in 2008.E-mail:jaisazah@unal.edu.co;Hector A. Botero received the B.Sc. degree in electrical engineering from Universidad de Antioquia, Colombia.E-mail:habotero@unal.edu.co;Hernan Alvarez received the B.Sc. degree in chemical engineer from Universidad Nacional de Colombia, Colombia. In 1995, he received the M.Sc. degree in system engineering at the Universidad Nacional de Colombia.E-mail:hdalvare@unal.edu.co
Cite this article:   
Jhon A. Isaza, Hector A. Botero, Hernan Alvarez. State Estimation Using Non-uniform and Delayed Information: A Review[J]. International Journal of Automation and Computing , vol. 15, no. 2, pp. 125-141, 2018.
URL:  
http://www.ijac.net/EN/10.1007/s11633-017-1106-7      或     http://www.ijac.net/EN/Y2018/V15/I2/125
 
[1] H. Afshari, S. Gadsden, and S. Habibi. Gaussian filters for parameter and state estimation:A general review of theory and recent trends. Signal Processing, 135:218-238, 2017.
[2] H. L. Alexander. State estimation for distributed systems with sensing delay. Data Structures and Target Classification, SPIE, 1470:103-111, 1991.
[3] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Dover Books on Electrical Engineering. Dover Publications, 2012.
[4] B. Bequette. Behavior of a CSTR with a recirculating jacket heat transfer system. In Proceedings of the American Control Conference., volume 4, pages 3275-3280, 2002.
[5] F. Cacace, F. Conte, and A. Germani. Filtering Continuous-Time Linear Systems with Time-Varying Measurement Delay. IEEE Transactions on Automatic Control, 60(5):1368-1373, 2015.
[6] F. Cacace, A. Germani, and C. Manes. A Chain Observer for Nonlinear Systems with Multiple TimeVarying Measurement Delays. SIAM Journal on Control and Optimization, 52(3):1862-1885, jan 2014.
[7] R. der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-space Models. 2004.
[8] D. Dochain. State and parameter estimation in chemical and biochemical processes:a tutorial. Journal of Process Control, 13(8):801-818, Dec. 2003.
[9] Y. Dong, W. Liu, and S. Zuo. Observer design for nonlinear systems with interval time-varying delay. WSEAS Transactions on systemns and control, 9:614-622, 2014.
[10] V. Fathabadi, M. Shahbazian, K. Salahshour, and L. Jargani. Comparison of adaptive kalman filter methods in state estimation of a nonlinear system using asynchronous measurements. In Proceedings of the World Congress on Engineering and Computer Science, volume 2, pages 20-22, 2009.
[11] A. Germani, C. Manes, and P. Pepe. A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, 47(1):96-101, 2002.
[12] A. Gopalakrishnan, N. S. Kaisare, and S. Narasimhan. Incorporating delayed and infrequent measurements in Extended Kalman Filter based nonlinear state estimation. Journal of Process Control, 21(1):119-129, 2011.
[13] Y. Guo and B. Huang. State estimation incorporating infrequent, delayed and integral measurements. Automatica, 58:32-38, 2015.
[14] Y. Guo, Y. Zhao, and B. Huang. Development of soft sensor by incorporating the delayed infrequent and irregular measurements. Journal of Process Control, 24(11):1733-1739, 2014.
[15] Q. P. Ha, N. D. That, P. T. Nam, and H. Trinh. Partial state estimation for linear systems with output and input time delays. ISA Transactions, 53(2):327-334, 2014.
[16] Z. Hidayat, R. Babuska, B. De Schutter, and A. N′uñez. Observers for linear distributed-parameter systems:A survey. ROSE 2011-IEEE International Symposium on Robotic and Sensors Environments, Proceedings, 19:166-171, 2011.
[17] J. A. Isaza, J. E. Rendón, J. P. Viana, and H. A. Botero. Nonlinear State Estimation for Batch Process with Delayed Measurements. In XVⅡ Latin American Conference of Automatic Control, pages 95-100, 2016.
[18] J. A. Isaza, J. D. Sanchez, E. Jimenez, and H. A. Botero. A Soft Sensor for Biomass in a Batch Process with Delayed Measurements. In XVⅡ Latin American Conference of Automatic Control, pages 334-339, 2016.
[19] L. Ji and J. B. Rawlings. Application of MHE to large-scale nonlinear processes with delayed lab measurements. Computers & Chemical Engineering, 2015.
[20] S.-X. Jing, T.-H. Pan, and Z.-M. Li. Recursive Bayesian algorithm for identification of systems with non-uniformly sampled input data. International Journal of Automation and Computing, pages 1-10, 2017.
[21] A. L. Juloski, W. P. M. H. Heemels, Y. Boers, and F. Verschure. Two approaches to state estimation for a class of piecewise affine systems. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), volume 1, pages 143-148 Vol.1, Dec 2003.
[22] N. Kazantzis and R. a. Wright. Nonlinear observer design in the presence of delayed output measurements. Systems and Control Letters, 54(9):877-886, 2005.
[23] A. Khosravian, J. Trump, R. Mahony, and HamelTarek. Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements. In American Control Conference, pages 3199-3205, Chicago, 2015.
[24] A. Khosravian, J. Trumpf, and R. Mahony. State Estimation for Nonlinear Systems with Delayed Output Measurements. In Conference on Decision and Control (CDC), pages 6330-6335, 2015.
[25] A. Khosravian, J. Trumpf, R. Mahony, and T. Hamel. State Estimation for Invariant Systems on Lie Groups with Delayed Output. Automatica, 68:254-265, 2015.
[26] K. R. Krishnan and I. M. Horowitz. Synthesis of a nonlinear feedback system with significant plant-ignorance for prescribed system tolerances. International Journal of Control, 19(4):689-706, 1974.
[27] T. D. Larsen, N. A. Andersen, O. Ravn, and N. K. Poulsen. Incorporation of time delayed measurements in a discrete-time kalman filter. In Decision and Control, 1998. Proceedings of the 37th IEEE Conference on, volume 4, pages 3972-3977. IEEE, 1998.
[28] S. Lee. Observer for discrete-time Lipschitz non-linear systems with delayed output. IET Control Theory & Applications, 5(1):54, 2011.
[29] W. Y. Leong, H. Trinh, and T. Fernando. Design of Distributed Functional Observers for Interconnected Time-Delay Systems. In 2013 IEEE 8th International Conference on Industrial and Information Systems ICⅡS, pages 191-196, 2013.
[30] K. V. Ling and K. W. Lim. Receding horizon recursive state estimation. IEEE Transactions on Automatic Control, 44(9):1750-1753, 1999.
[31] R. López-Negrete and L. T. Biegler. A Moving Horizon Estimator for processes with multi-rate measurements:A Nonlinear Programming sensitivity approach. Journal of Process Control, 22(4):677-688, 2012.
[32] M. S. Mahmoud and M. F. Emzir. State estimation with asynchronous multi-rate multi-smart sensors. Information Sciences, 196:15-27, 2012.
[33] M. Moayedi, Y. K. Foo, and Y. C. Soh. Filtering for networked control systems with single/multiple measurement packets subject to multiple-step measurement delays and multiple packet dropouts. International Journal of Systems Science, 42(3):335-348, 2011.
[34] J. Mohd Ali, N. Ha Hoang, M. Hussain, and D. Dochain. Review and classification of recent observers applied in chemical process systems. Computers & Chemical Engineering, 76:27-41, 2015.
[35] D. Munoz de la Pena and P. D. Christofides. Lyapunov-Based Model Predictive Control of Nonlinear Systems Subject to Data Losses. IEEE Transactions on Automatic Control, 53(9):2076-2089, 2008.
[36] D. Nada, M. Bousbia-Salah, and M. Bettayeb. Multisensor data fusion for wheelchair position estimation with unscented Kalman filter. International Journal of Automation and Computing, pages 1-11, 2017.
[37] P. Niamsup and V. N. Phat. Robust finite-time H control of linear time-varying delay systems with bounded control via Riccati equations. International Journal of Automation and Computing, pages 1-9, 2017.
[38] S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, and S. L. Shah. Nonlinear Bayesian state estimation:A review of recent developments. Control Engineering Practice, 20(10):933-953, 2012.
[39] I. Peñarrocha, R. Sanchis, and J. Romero. State estimator for multisensor systems with irregular sampling and time-varying delays. International Journal of Systems Science, 43(8):1441-1453, 2012.
[40] V. Prasad, M. Schley, L. P. Russo, and B. Wayne Bequette. Product property and production rate control of styrene polymerization. Journal of Process Control, 12(3):353-372, 2002.
[41] D. Simon. Optimal State Estimation. John Wiley & Sons, Inc., Hoboken, NJ, USA, may 2006.
[42] O. J. Smith. A controller to overcome dead time. ISA journal, 6(2):28-33, 1959.
[43] S. Sun, H. Lin, J. Ma, and X. Li. Multi-sensor distributed fusion estimation with applications in networked systems:A review paper. Information Fusion, 38:122-134, 2017.
[44] S. Tatiraju, M. Soroush, and B. Ogunnaike. Multi-rate nonlinear state estimation in a polymerization reactor. Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 5(4):769-780, 1998.
[45] B. L. Walcott, M. J. Corless, and S. H. Zak. Comparative study of nonlinear state observation techniques. Int. J. Control, 45:2109-2132, 1987.
[46] H. P. Wang, Y. Tian, and C. Vasseur. Piecewise continuous hybrid systems based observer design for linear systems with variable sampling periods and delay output. Signal Processing, 114:75-84, 2015.
[47] W. Wang, X.-h. Huang, and M. Wang. Survey of sequence measurement filtering algorithm. Control and Decision, 1:2, 2012.
[48] Y. Wu and X. Luo. A novel calibration approach of soft sensor based on multirate data fusion technology. Journal of Process Control, 20(10):1252-1260, 2010.
[49] L. Yan, B. Xiao, Y. Xia, and M. Fu. State estimation for asynchronous multirate multisensor nonlinear dynamic systems with missing measurements. International Journal of Adaptive Control and Signal Processing, 26(6):516-529, 2012.
[50] L. Yan, D. Zhou, M. Fu, and Y. Xia. State estimation for asynchronous multirate multisensor dynamic systems with missing measurements. IET Signal Processing, 4(6):728-739, 2010.
[51] J. Zeng and J. Liu. Distributed moving horizon state estimation:Simultaneously handling communication delays and data losses. Systems & Control Letters, 75:56-68, 2015.
[52] J. Zhang and J. Liu. Observer-enhanced distributed moving horizon state estimation subject to communication delays. Journal of Process Control, 24(5):672-686, 2014.
[53] G. Zhao and J. Wang. Reset observers for linear timevarying delay systems:Delay-dependent approach. Journal of the Franklin Institute, 351(11):5133-5147, 2014.
[54] L. Zhao, J. Wang, T. Yu, K. Chen, and T. Liu. Nonlinear state estimation for fermentation process using cubature Kalman filter to incorporate delayed measurements. Chinese Journal of Chemical Engineering, 23(11):1801-1810, 2015.
Copyright 2010 by International Journal of Automation and Computing